Abstract. Let $A \subseteq \mathbb{R}^M$ be a discrete subgroup of rank N, so that A is the image of \mathbb{Z}^N under the action of an $M \times N$ real matrix A of rank N. Let $B \subseteq \mathbb{R}^M$ be the \mathbb{R}-linear subspace spanned by the columns of A, and let $|A|$ denote the norm of the matrix A as a linear map from \mathbb{R}^N into \mathbb{R}^M. We prove an explicit inequality that estimates the number of points in A contained in a ball of radius R centered at a generic point in B. For a fixed matrix A and $R \to \infty$ the inequality we obtain is not the best known. However, the inequality we prove is uniform over the set of all matrices A such that $|A|$ is bounded by a positive parameter. A particularly simple form of the bound occurs when $N = 3$.