
Probability Qualifying Exam 2021

There are eight problems on this test. Read each problem carefully before beginning. PARTIAL
CREDIT CANNOT BE AWARDED UNLESS YOUR WORK IS CLEAR.

Problem Possible Points Earned Points

1 10
2 10
3 10
4 10
5 10
6 10
7 10
8 10

Total 80
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Problem 1. Let a ∧b := min{a,b}.
For random variables X ,Y (defined on the same probability space), let

ρ(X ,Y ) := E(|X −Y |∧1) .

For sequences {(Xn ,Yn)}, where Xn and Yn are defined on the same probability space, show
that limn→∞ρ(Xn ,Yn) = 0 if and only if Xn −Yn → 0 in probability.

Solution: 5 points for each direction.
Recall that Xn −Yn → 0 in probability means, by definition, that for every ε> 0,

lim
n→∞P(|Xn −Yn | > ε) = 0.

Suppose that Xn −Yn → 0 in probability. For any ε> 0,

E(|Xn −Yn |∧1) =
∫
|Xn−Yn |<ε

(|Xn −Yn |∧1)dP+
∫
|Xn−Yn |≥ε

(|Xn −Yn |∧1)dP

≤ ε+P(|Xn −Yn | ≥ ε) .

For n large enough, by definition of convergence in probability, the second term on the right
can be made less than ε. Thus

ρ(Xn ,Yn) ≤ 2ε

for n sufficiently large. Since ε is arbitrary, limn ρ(Xn ,Yn) = 0.
Suppose on the other hand that ρ(Xn ,Yn) → 0 as n →∞.
For any ε> 0,

E(|Xn −Yn |∧1) =
∫
|Xn−Yn |≥1

(|Xn −Yn |∧1)dP+
∫
ε<|Xn−Yn |<1

(|Xn −Yn |∧1)dP

+
∫
|Xn−Yn |≤ε

(|Xn −Yn |∧1)dP

≥P(|Xn −Yn | > 1)+εP(ε< |Xn −Yn | < 1)+0.

Thus both terms on the right go to 0 as n →∞, which implies

P(|Xn −Yn | > 1)+P(ε< |Xn −Yn | < 1) =P(|Xn −Yn | > ε) → 0.
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Problem 2. Suppose that X1, X2, . . . are random variables satisfying E(Xi ) = 0 and such that
E(X 2

i ) <∞ for all i . Assume further that there is a constant C1 > 0 (not depending on i or j ) so
that

E[Xi X j ] ≤ C1

|i − j |2 +1
.

Let Sn =∑n
i=1 Xi .

(a) Show that Var(Sn+m − Sn) ≤ C2m for all n,m, where C2 is a constant (not depending on
n,m).

(b) Use (a) to show that limn→∞
Sn2

n2 = 0 a.s.

(c) Show that limn→∞ Sn
n = 0 a.s.

Hint: Show that the events An = {
⋃

m≤2n |Sn2+m −Sn2 | > εn2} occur only finitely often.

Solution:
We have

Var(Sn+m −Sn) = E
[(

m∑
k=1

Xn+k

)2]

≤ 2
m∑

k=1

∑
j≤k

E[Xn+ j Xn+k ]

≤ 2
m∑

k=1

∑
j≤k

C1

(k − j )2 +1

≤ 2
m∑

k=1

∞∑
`=0

C1

`2 +1

≤C2m .

This establishes the first inequality.
Now

P(|Sn2 | > n2ε) ≤ Var(Sn2 )

n4ε2

≤ C2n2

ε2n4
= C2

ε2n2
.

Thus, the first Borel-Cantelli Lemma shows that

P{|Sn2 | > εn2 i.o.} = 0.
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Consequently,

P

( ⋃
ε∈Q+

⋂
N

⋃
n≥N

{|Sn2 /n2| > ε}

)
= 0.

In other words, a.s.,

lim
n→∞

Sn2

n2
= 0.

For the last part, for m ≤ 2n,

P{|Sn2+m −Sn2 | > εn2} ≤ Var(Sn2+m −Sn2 )

ε2n4
≤ C2m

ε2n4
≤ C3

ε2n3
.

Using a union bound over the 2n events in the union,

P

{ ⋃
m≤2n

|Sn2+m −Sn2 | > εn2
}
≤ C32n

ε2n3
≤ C4

ε2n2
.

Applying Borel-Cantelli again, we have that, for

An(ε) := ⋃
m≤2n

{|Sn2+m −Sn2 | > εn2} ,

since
∑

nP(An(ε)) ≤∑
n

C4
ε2n2 <∞,

P(An i.o.) = 0.

Suppose thatω ∈G = {An(ε) i.o.}c∩{limn Sn2 /n2 = 0}. By the preceding, we know thatP(G) = 1.
Thus there is some N (ω) so that for n > N (ω)

max
m≤2n

|Sn2+m(ω)−Sn2 (ω)|
n2

≤ ε and
|Sn2 (ω)|

n2
< ε .

Thus, for n > N (ω), for all k satisfying n2 ≤ k < (n +1)2,

|Sk (ω)|
k

≤ |Sk (ω)|
n2

≤ |Sk (ω)−Sn2 (ω)|
n2

+ |Sn2 (ω)|
n2

≤ 2ε .

In other words,

limsup
k→∞

|Sk (ω)|
k

≤ 2ε .

Thus proves that

P

(
limsup

k→∞
|Sk |/k > 2ε

)
= 0.

Taking a union over positive rational ε, we have

lim
n→∞

Sn

n
= 0, a.s. .
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Problem 3. Show that if {Xn,i } are i.i.d. with Xn,i ∈ {0,1} and E(Xn,i ) = pn , and npi → λ, then
Sn =∑n

i=1 Xn,i converges in distribution to a Poisson(λ) distribution.

Solution:
We have, for φn the fourier transform of Sn ,

φn(t ) = E
[

exp

(
i t

n∑
i=1

Xn,i

)]

=
n∏

i=1
E
[
exp

(
i t Xn,i

)]
= (
E
[
exp

(
i t Xn,1

)])n

=
(
(1−pn)+pne i t

)n

= (1−pn(1−e i t ))n

=
(
1− npn(1−e i t )

n

)n

.

The second equality follows from independence of {Xn,i }n
i=1. The third equality follows since

{Xn,i }n
i=1 are identically distributed. Since npn →λ, we have that

φn(t ) → e−λ(1−ei t ) = eλ(ei t−1) .

Note the right-hand side is the fourier transform of a Poisson(λ) random variable X :

φ(t ) = E[e i t X ] =
∞∑

k=0
e i tk e−λλk

k !
= e−λ ∞∑

k=0

(λe i t )k

k !
= e−λ(1+ei t ) .

Thus the continuity theorem implies that the distributions converge.
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Problem 4. Let {Zn,k } be i.i.d. non-negative, integer-valued random variables with E(Zn,k ) =µ.
Define, recursively,

Xn =
Xn−1∑
k=1

Zn,k .

Note {Xn} is a branching process with average number of offspring per individual equal to µ.
Show that Xn

µn converges to a finite limit (possibly random) as n →∞ almost surely.

Solution:
Let Fn =σ(Zm,k : m ≤ n). Note that

E[Xn+1 |Fn] = E
[

Xn∑
k=1

Zn+1,k

∣∣∣∣∣Fn

]

= E
[ ∞∑

k=1
Zn+1,k I {k ≤ Xn}

∣∣∣∣∣Fn

]

=
∞∑

k=1
I {k ≤ Xn}E[Zn+1,k |Fn] .

This follows since I {k ≤ Xn} is Fn-measurable, so it can be factored outside the conditional
expectation. Since Zn+1,k is independent of Fn , we have

E[Zn+1,k |Fn] = E[Zn+1,k ] =µ ,

and substituting in we have

E[Xn+1 |Fn] =
∞∑

k=1
I {k ≤ Xn}µ= Xnµ .

We then can find that

E

[
Xn+1

µn+1

∣∣∣∣Fn

]
= 1

µn+1
µXn = Xn

µn
.

Thus Mn = Xn/µn defines a martingale. It is non-negative and E[Mn] = 1 for all n, whence
it is bounded in L1. The Martingale Convergence Theorem implies that there exists a finite
valued r.v. M∞ such that Mn → M∞ a.s.
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Problem 5. Suppose that {Xn} is the Markov chain on {0,1, . . .} which satisfies, for k ≥ 1,

P (k,k +1) = 1−P (k,k −1) = p < 1

2
,

and P (0,0) = 1−p = 1−P (0,1). (Informally, {Xn} is a nearest-neighbor walk onNwhich moves
up with probability p and down with probability 1−p.)

Show that E0(τ0) <∞, where

τ0 = min{n ≥ 1 : Xn = 0} .

Solution: Note that if µ(k) = (p/q)k , then for k ≥ 1,

µ(k −1)P (k −1,k)+µ(k +1)P (k +1,k) = (p/q)k−1p + (p/q)k+1q

= (p/q)k [q +p]

=µ(k) .

If k = 0,

µ(0)P (0,0)+µ(1)P (1,0) = 1(1−p)+ p

q
q = 1−p +p =µ(0) .

That is, µ satisfies
µ=µP ,

and is thus a stationary measure.
Since p/q < 1, we have

∑
k µ(k) <∞, so it can be normalized to obtain a probability distri-

bution π which satisfies π=πP .
We know that any irreducible chain having such a stationary distribution must be positive

recurrent, with

E0τ0 = 1

π(0)
<∞ .
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Problem 6. Let (Bt )t≥0 be standard Brownian motion with B0 = 0. Let

τ := inf{t ≥ 0 : Bt ∉ (a,b)} , for a < 0 < b .

Let

Mt = B 3
t −3

∫ t

0
Budu.

Show that (Mt )t≥0 is a martingale, and find an expression (in terms of a,b only) for E
[∫ τ

0 Budu
]
.

You may find useful that P(Bτ = a) = b/(b −a), and may use the fact that E[τ] <∞ without
proof. State carefully any optional stopping theorem you apply, and show the conditions are
satisfied.

Solution:
Applying Itô’s formula to f (x) = x3,

B 3
t = B 3

0 +3
∫ t

0
B 2

udBu +3
∫ t

0
Budu, (1)

and so

Mt = 3
∫ t

0
B 2

udBu . (2)

As an integral against dBu , the process {Mt } is a local martingale. In fact it is a martingale,
because E[

∫ t
0 B 6

s d s] <∞ (see Theorem 7.6.4 in Durrett).
It now follows by the (version we’re using of) the Optional Sampling Theorem that Mt∧τ is

a martingale, and so
E[Mτ∧t ] = E[M0] = 0.

Therefore, for each t ,

E[B 3
τ∧t ] = 3E[

∫ τ∧t

0
Budu].

The left-hand side is bounded by (a ∨b)3, so by Bounded Convergence, convgerges as t →∞
to E[B 3

τ]. The right-hand side is bounded by τ(a∨b), a random variable with finite expectation,
so by Dominated Convergence, it converges to E[

∫ τ
0 Budu.

Therefore, since P{Bτ = a} = b/(b −a),

E

[
3
∫ τ

0
Budu

]
= ba3 −ab3

b −a
(3)

= ab
a2 −b2

b −a
(4)

= ab(a +b). (5)
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Problem 7. Let (Xn)n≥0 be an irreducible Markov chain on an infinite state space S with tran-
sition matrix P , and for an arbitrary subset F of S let τF = inf{t ≥ 0 : Xn ∈ F } be the first hitting
time of F . Fix finite disjoint subsets A and B of S and let H be the set of functions h : S → R

that solve the following system of equations:

Ph(x) = h(x) for x ∉ A∪B

h(x) = 1 for x ∈ A

h(x) = 0 for x ∈ B.

(a) Show that hA,B (x) =Px{τA < τB } is in H .

(b) Show that if the chain is transient, then hA,B is not the only member of H by explicitly
constructing other solutions.

Hint: consider the function e(x) =Px{τA∪B =∞}.

Solution:
(a) Clearly, hA,B has the right boundary conditions. By conditioning on the first step, and

using the Markov property, if x ∉ A∪B ,

hA,B (x) =∑
y
Px{τA < τB & X1 = y}

=∑
y
Px{X1 = y}Px{τA < τB ‖ X1 = y}

=∑
y

p(x, y)Py {τA < τB }

= PhA,B (x).

(b) The same argument shows that e solves the same equation except that e(x) = 0 for
x ∈ A, and so by linearity, for any α ∈ R, the function h(x) = hA,B (x)+αe(x) is also a solution.
Since the chain is transient, e(x) > 0 for at least some x ∉ A∪B .
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Problem 8. Let (Bt )t≥0 be a standard Brownian motion, and define Wt = tB1/t . Show that
(Wt )t≥0 is also a standard Brownian motion.

Solution:
Brownian motion is a Gaussian process, and so by sufficiency of means and covariances

for determining the distribution of Gaussian processes, it suffices to show that W0 = 0, that for
any t1 < ·· · < tn that (Wt1 , . . . ,Wtn ) is multivariate Gaussian and that E[WsWt ] = min(s, t ).

First, W0 = limt→∞ Bt /t , which is zero almost surely since E[Bt /t ] = 0 and E[(Bt /t )2] =
1/t → 0.

Next, note that (Wt1 , . . . ,Wtn ) is multivariate Gaussian because it is a linear transformation
of (B1/t1 , . . . ,B1/tn ).

Finally, compute that if s < t ,

E[WsWt ] = stE[B1/sB1/t ]

= st min(1/s,1/t )

= s,

as required.
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