F.Q1. Consider the map
\[f : \mathbb{C}^2 \to \mathbb{R}^2, \quad f(z, w) = (|z|^2 + |w|^2, 2|z|^2 - 3|w|^2). \]
Prove that pre-image \(f^{-1}(1, 0) \subset \mathbb{C}^2 \) is a smooth, compact, 2-dimensional manifold.

\[f^{-1}(1, 0) \subset \mathbb{C}^2 \]

F.Q1 Sol. Use real coordinates \((x, y, u, v)\) where
\[z = x + iy \quad \text{and} \quad w = u + iv, \]
the Jacobian of map
\[f(x, y, u, v) = (x^2 + y^2 + u^2 + v^2, 2x^2 + 2y^2 - 3u^2 - 3v^2) \]
is given by
\[Df = \begin{bmatrix} 2x & 2y & 2u & 2v \\ 4x & 4y & -6u & -6v \end{bmatrix}. \]
If \(Df \) has rank \(\leq 1 \) on \(f^{-1}(1, 0) \) we would have
\[-20xu = 0, \quad -20xv = 0, \quad -20yu = 0, \quad -20yv = 0, \]
where the first equality is the determinant of the submatrix formed by the first and third columns. This implies \((x^2 + y^2)(u^2 + v^2) = 0\), which contradicts with \(x^2 + y^2 + u^2 + v^2 = 1 \). Hence \(Df \) has rank 2 on \(f^{-1}(1, 0) \), and by the transversality theorem we conclude that \(f^{-1}(1, 0) \) is a smooth 2-dimensional manifold. The compactness of \(f^{-1}(1, 0) \) follows from that \(f^{-1}(1, 0) \) is a subset of \(S^3(1) \).

F.Q2. Let \(\mathbb{RP}^2 \equiv S^2/\sim \) be the real projective space. Let \(f : \mathbb{RP}^2 \to \mathbb{R}^3 \) be a map defined by
\[f([x, y, z]) = \frac{1}{x^2 + y^2 + z^2} (yz, zx, xy). \]
(F.Q2a) Show that \(f \) is smooth.
(F.Q2b) Find a point in \(\mathbb{RP}^2 \) to show that \(f \) is not an immersion.

F.Q2 Sol. (F.Q2a) We may cover \(S^2 \) (and hence for \(\mathbb{RP}^2 \)) by \(S_{x,+} = \{(x, y, z), x > 0, x^2 + y^2 + z^2 = 1\} \) and 5 others similarly defined. Then \(\varphi_{x,+} : S_{x,+} \to (y, z) \) and 5 others defines a smooth coordinate atlas on \(\mathbb{RP}^2 \).

To see that \(f \) is smooth it is sufficient to check
\[f \circ \varphi_{x,+}^{-1} (y, z) = (yz, z\sqrt{1 - y^2 - z^2}, y\sqrt{1 - y^2 - z^2}) \]
is smooth on \(\{(y, z), y^2 + z^2 < 1\} \), and 5 others is smooth also. This is clearly true for \(f \circ \varphi_{x,+}^{-1} \) and for 5 others by symmetry.

(F.Q2b) At point \((y, z) = (0, 0)\) we compute the Jacobian of \(f \circ \varphi_{x,+}^{-1} \) and find it is a zero matrix. Hence \(f \) can not be an immersion.

F.Q3. Let \(F : S^3 \to S^2 \) be a smooth map between spheres.
(F.Q3a) Show that there exist a smooth 2-form \(\omega \) on \(S^2 \) such that \(\int_{S^2} \omega = 1 \), and a smooth 1-form \(\eta \) on \(S^3 \) such that \(F^*\omega = d\eta \).

(F.Q3b) Let \(\tilde{\omega} \) be another smooth 2-form on \(S^2 \) satisfying \(\int_{S^2} \tilde{\omega} = 1 \). Show that there is a smooth 1-form \(\tau \) on \(S^2 \) such that \(\tilde{\eta} \equiv \eta + F^*\tau \) satisfies \(F^*\tilde{\omega} = d\tilde{\eta} \).

(F.Q3c) Show that
\[
\int_{S^3} \eta \wedge d\eta = \int_{S^3} \tilde{\eta} \wedge d\tilde{\eta}.
\]

F.Q3 Sol. (F.Q3a) Choose local coordinate chart with \(S_{x,+} = \{(x, y, z), x > 0, x^2 + y^2 + z^2 = 1 \} \) and \(\varphi_{x,+} : S_{x,+} \to (y, z) \). Let \(\rho \) by a cutoff function supported on \(S_{x,+} \). Then \(\rho dy \wedge dz \) is a smooth 2-form on \(S^2 \) with \(\int_{S^2} \rho dy \wedge dz > 0 \). We may choose
\[
\omega = \frac{1}{\int_{S^2} \rho dy \wedge dz} \cdot \rho dy \wedge dz.
\]

Note that \(d\omega = 0 \).

Note that \(dF^*\omega = F^*d\omega = F^*0 = 0 \) and cohomology class \([F^*\omega] \in H^2_{DeRh}(S^3) = 0 \), hence there is a smooth 1-form \(\eta \) on \(S^3 \) such that \(F^*\omega = d\eta \).

(F.Q3b) Since as cohomology class \([\omega] = [\tilde{\omega}] \in H^2_{DeRh}(S^2) = \mathbb{R} \), there is a smooth 1-form \(\tau \) on \(S^2 \) such that \(\tilde{\omega} = \omega + d\tau \). Define \(\tilde{\eta} = \eta + F^*\tau \), we verify
\[
F^*\tilde{\omega} = F^*(\omega + d\tau) = d\eta + dF^*\tau = d\tilde{\eta}.
\]

(F.Q3c) Note that
\[
\eta \wedge dF^*\tau = -d(\eta \wedge F^*\tau) + d\eta \wedge F^*\tau
\]
we compute
\[
\int_{S^3} \tilde{\eta} \wedge d\tilde{\eta} - \int_{S^3} \eta \wedge d\eta
= \int_{S^3} \eta \wedge dF^*\tau + F^*\tau \wedge d\eta + F^*\tau \wedge dF^*\tau
= \int_{S^3} -d(\eta \wedge F^*\tau) + 2d\eta \wedge F^*\tau + F^*\tau \wedge dF^*\tau
= \int_{S^3} 2F^*\omega \wedge F^*\tau + F^*\tau \wedge dF^*\tau \quad \text{by Stokes theorem}
= \int_{S^3} F^*(2\omega \wedge \tau + \tau \wedge d\tau)
= 0,
\]
where the last equality is due to \(0 = 2\omega \wedge \tau + \tau \wedge d\tau \in \Omega^3(S^2) \).

F.Q4. Let \(M^3 \to \mathbb{R}^3 \) be a compact, connected, 3-dimensional smooth submanifold/domain with boundary \(\partial M \) which has the induced (Stokes) orientation. For any point \(p_0 = (x_0, y_0, z_0) \in \mathbb{R}^3 \), define the translated submanifold
\[
M_{p_0} \doteq \{(x + x_0, y + y_0, z + z_0), \ (x, y, z) \in M \}.
\]
Compute the limit
\[
\lim_{p_0 \to \infty} \int_{\partial M_{p_0}} \omega
\]
where \(\omega\) is the 2-form
\[
\omega = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}.
\]

F.Q4 Sol. First we show \(d\omega = 0\) by computing
\[
d\omega = \frac{dx \wedge dy \wedge dz + dy \wedge dz \wedge dx + dz \wedge dx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}
- \frac{3(xdx + ydy + zdz)}{(x^2 + y^2 + z^2)^{5/2}} \wedge (xdy \wedge dz + ydz \wedge dx + zdx \wedge dy)
= 0.
\]

Note that for \(p_0\) far away from origin \(\vec{0}\) we have \(\vec{0} \notin M_{p_0}\). Since \(\omega\) is smooth on \(\mathbb{R}^3 \setminus \{0\}\), we have
\[
\int_{\partial M_{p_0}} \omega = \int_{M_{p_0}} d\omega = 0
\]
by Stokes theorem. The limit follows. \(\square\)

F.Q5. Consider two Riemannian metrics \(g\) and \(u^2 \cdot g\) on some smooth manifold \(M^n\), where \(u\) is a smooth positive function on \(M\). Let \((U, \varphi, x)\) be a local coordinate chart on \(M\). Compute the Christoffel symbols \(\Gamma(u^2 \cdot g)^k_{ij}\) of Riemannian connection associated to metric \(u^2 \cdot g\) in terms of \(u\) (along with its derivatives) and the Christoffel symbols \(\Gamma^k_{ij} = \Gamma(g)^k_{ij}\).

F.Q5 Sol. We compute
\[
\Gamma(u^2 \cdot g)^k_{ij} = \frac{1}{2} (u^2 \cdot g)^k_{jl} (\partial_i (u^2 \cdot g)_{jl} + \partial_j (u^2 \cdot g)_{il} - \partial_l (u^2 \cdot g)_{ij})
= \frac{1}{2} u^{-2} \cdot g^{kl} (u^2 \partial_i g_{jl} + u^2 \partial_j g_{il} - u^2 \partial_l g_{ij} + 2uu_i g_{jl} + 2uu_j g_{il} - 2uu g_{ij})
= \Gamma(g)^k_{ij} + \frac{1}{u} \delta^k_i u_i + \frac{1}{u} \delta^k_j u_j - \frac{1}{u} g^{kl} g_{ij} u_i,
\]
where \(u_i = \partial_i u = \frac{\partial u}{\partial x^i}\). \(\square\)

F.Q6. Consider parametrized surface \(\Sigma^2 \subset \mathbb{R}^3\) defined by
\[
x = 3u - u^3 + 3uv^2, \quad y = -3v + v^3 - 3u^2 v, \quad z = 3u^2 - 3v^2,
\]
where \((u, v) \in \mathbb{R}^2\). Show that its first fundamental form \(I\) (induced metric) is rotationally symmetric. I.e., there is a change of coordinates \((u, v) \to (w, \theta)\) such that
\[
I = h(w)^2 dw^2 + k(w)^2 d\theta^2,
\]
where \(h(w) \) and \(k(w) \) are two positive functions of \(w \).

F.Q6 Sol. We compute

\[
I = (3 - 3a^2 + 3v^2)du + 6uvdv)^2 + (-6uvdu + (-3 + 3v^2 - 3a^2)dv^2 + (6udu - 6uvd^2)
\]

\[= 9(1 + a^2 + v^2)da^2 + 9(1 + u^2 + v^2)dv^2\]

Let \(u = w \cos \theta \) and \(v = w \sin \theta \), then

\[
I = 9(1 + w^2)(dw^2 + w^2d\theta^2),
\]

which is rotationally symmetric.

F.Q7. Suppose the metric on some surface \(\Sigma^2 \) is given by

\[
ds^2 = du^2 + 2 \cos f(u,v)du \cdot dv + dv^2,
\]

where \(f \) is a function of \((u,v)\) taking value in \((-1,1)\). Show that the Gauss curvature \(K = -\frac{\partial^2 f}{\sin f} \).

F.Q7 Sol. From the following formula for Gauss curvature

\[
K = \left| \begin{array}{ccc}
-\frac{1}{2}E_{uu} + F_{uv} - \frac{1}{2}G_{uu} & \frac{1}{2}E_u - \frac{1}{2}E_v & 0 \\
F_v - \frac{1}{2}G_u & E & F \\
\frac{1}{2}G_v & F & G
\end{array} \right| - \left| \begin{array}{ccc}
0 & \frac{1}{2}E_v & \frac{1}{2}G_u \\
\frac{1}{2}E_v & E & F \\
\frac{1}{2}G_u & F & G
\end{array} \right|
\]

\[
(EG - F^2)^2
\]

we have

\[
K = \left| \begin{array}{ccc}
- \cos f \cdot f_u & - \sin f \cdot f_v & 0 \\
- \sin f \cdot f_v & \cos f & 0 \\
0 & \cos f & 1
\end{array} \right| - \left| \begin{array}{ccc}
0 & \frac{1}{2}E_v & \frac{1}{2}G_u \\
\frac{1}{2}E_v & E & F \\
\frac{1}{2}G_u & F & G
\end{array} \right|
\]

\[
\left(1 - \cos^2 f\right)^2
\]

\[
(1 - \cos^2 f) \cdot f_{uv} + \sin f \cdot f_v \cdot \sin f \cdot f_u
\]

\[
\frac{\sin^4 f}{\sin^4 f}
\]

\[
\frac{f_{uv}}{\sin f}.
\]

F.Q8. Let \((M^n,g)\) be a complete Riemannian manifold. Let \(N^k \) and \(W^l \) be two embedded submanifolds of \(M \) with no boundary, \(1 \leq k, l \leq n - 1 \). Assume (i) \(N \) is compact, (ii) \(W \) is a closed subset (not necessarily compact), and (iii) \(N \cap W = \emptyset \).

F.Q8a Prove that there exists a minimal geodesic \(\gamma : [0,1] \rightarrow M \) with \(\gamma(0) \in N \) and \(\gamma(1) \in W \) such that length

\[
L(\gamma) = \inf_{p \in N \text{ and } q \in W} d_M(p,q),
\]
where \(d_M \) is the distance function on \(M \) induced from metric \(g \).

(F.Q8b) Prove that the geodesic \(\gamma \) in part (F.Q8a) is perpendicular to \(N \) at \(t = 0 \), and to \(W \) at \(t = 1 \).

F.Q8 Sol. (F.Q8a) Let \(\{(p_i, q_i)\} \) be a sequence of point pairs in \(N \times W \) such that
\[
\inf_{p \in N \text{ and } q \in W} d_M(p, q) \quad \text{as } i \to \infty.
\]

Since \(N \) is compact, there is a subsequence (still indexed by \(i \)) such that \(p_i \to p_\infty \in N \). Hence the corresponding sequence \(\{q_i\} \) is in a bounded neighborhood of \(q_\infty \). Since \(M \) is complete, by taking another subsequence we may assume \(q_i \to q_\infty \). Since \(W \) is closed we have \(q_\infty \in W \), hence
\[
0 < d_M(p_\infty, q_\infty) = \inf_{p \in N \text{ and } q \in W} d_M(p, q)
\]
We may take \(\gamma : [0, 1] \to M \) to be a minimal geodesic joining \(p_\infty \) and \(q_\infty \).

(F.Q8b) We prove that \(\gamma'(1) \) is perpendicular to \(T_{p_\infty} W \) by contradiction. Suppose vector \(V_s \in T_{p_\infty} W \) satisfies \(g(V_s, \gamma'(1)) < 0 \). We may choose a smooth vector field \(V(t) \) along \(\gamma(t) \) such that \(V(0) = 0 \) and \(V(1) = V_s \). Let \(\gamma_s, s \in (-\epsilon, \epsilon) \), be a variation of \(\gamma \) with variational field \(V(t) \).

By the first variation formula of length functional around a minimal geodesic we have
\[
0 \leq \frac{d}{ds} \bigg|_{s=0} L(\gamma_s) = g(V(1), \gamma'(1)) - g(V(0), \gamma'(0)) = g(V_s, \gamma'(1)) < 0,
\]
which is the required contradiction.

The perpendicular property at \(t = 0 \) can be proved similarly.

\(\square \)

F.Q9. Consider torus \(T^3 = S^1 \times S^1 \times S^1 \). Below we view each \(S^1 \) as \([-\pi, \pi]\) with \(-\pi\) and \(\pi\) identified.

(F.Q9a) Does it admit a metric with positive Ricci curvature everywhere?

(F.Q9b) If not above, construct (not-necessarily in a closed formula) a smooth metric \(g \) on \(T^3 \) such that all the sectional curvature is \(+1\) on the following sub-domain
\[
(-\pi/4, \pi/4) \times (-\pi/4, \pi/4) \times (-\pi/4, \pi/4) \subset T^3.
\]

F.Q9 Sol. (F.Q9a) No. To see this by contradiction, we assume that the Ricci curvature is positive on \(T^3 \). Since \(T^3 \) is compact, we may assume that Ricci curvature has a constant lower bound \(k > 0 \). By the Myers theorem the universal covering space of \(T^3 \) should be compact, which is a contradiction.

(F.Q9b) We may choose a diffeomorphism \(\psi : (-\pi/3, \pi/3) \times (-\pi/3, \pi/3) \times (-\pi/3, \pi/3) \subset T^3 \) to an open set in sphere \(S^4 \) of radius 1 with standard metric \(g_{sph} \). Let \(\rho \) be a smooth cutoff function which equals to 1 on \((-\pi/4, \pi/4) \times (-\pi/4, \pi/4) \times (-\pi/4, \pi/4)\) and has support inside \((-\pi/3, \pi/3) \times (-\pi/3, \pi/3) \times (-\pi/3, \pi/3)\).

Let \(g_0 \) be an arbitrary Riemannian metric on \(T^3 \), then it is easy to see
\[
\rho \psi^* g_{sph} + (1 - \rho) g_0
\]
is the required metric \(g \).
F.Q10. Let G^n be a Lie group of dimension n, with identity element e. Recall that multiplication from the left by an element $h \in G$ defines a diffeomorphism $L_h : G \to G, \ L_h(g) = h \cdot g$. A differential form $\tilde{\omega}$ on G is said to be left invariant if it satisfies the condition $(L_h)^* \tilde{\omega} = \tilde{\omega}$ for all $h \in G$.

(F.Q10a) Prove that any covector $v^* \in T^*_e G$ uniquely extends to a smooth, left-invariant 1-form ω on G.

(F.Q10b) Use the result of (F.Q10a) to prove that there exist n pointwise independent, left-invariant 1-forms ω^k on $G, \ k = 1, 2, \ldots, n$.

(F.Q10c) Prove that there exist constants c^k_{ij}, such that for each ω^k in (F.Q10b)

$$d\omega^k = \sum_{1 \leq i<j \leq n} c^k_{ij} : \omega^i \wedge \omega^j.$$

F.Q10 Sol. (F.Q10a) We define ω by $\omega(g) = (L_{g^{-1}})^* v^* \in T^*_g G$ for each $g \in G$. From the definition of Lie group, operator $(L_{g^{-1}})^*$ is smooth in g, hence ω is a smooth 1-form on G.

To see that ω is left invariant, we compute

\begin{align*}
((L_h)^* \omega)(g) &= (L_h)^* (\omega(hg)) = (L_h)^* (L_{(hg)^{-1}})^* v^* = (L_{(hg)^{-1}} \circ L_h)^* v^* \\
 &= (L_{(hg)^{-1}} \circ L_h)^* v^* = (L_{g^{-1}})^* v^* = \omega(g).
\end{align*}

The uniqueness is obvious.

(F.Q10b) Let $\{e^*_i\}_{i=1}^n$ be a coframe in $T^*_e G$. Then from (F.Q10a) they define left-invariant 1-forms $\{\omega^k\}_{k=1}^n$. Since $(L_{g^{-1}})^* : T^*_e G \to T^*_g G$ is an isomorphism of vector spaces, we conclude that $\omega^i(g) = (L_{g^{-1}})^* e^*_i, \cdots, \omega^n(g) = (L_{g^{-1}})^* e^*_n$ are linearly independent.

(F.Q10c) From (F.Q10b) we know that $\omega^i(g) \wedge \omega^j(g), 1 \leq i < j \leq n$ form a basis of $\Lambda^2 T_g G$ for each $g \in G$. Hence there are functions $c^k_{ij}(g)$ such that

$$d\omega^k(g) = \sum_{1 \leq i<j \leq n} c^k_{ij}(g) : \omega^i(g) \wedge \omega^j(g),$$

(1)

$$d\omega^k(hg) = \sum_{1 \leq i<j \leq n} c^k_{ij}(hg) : \omega^i(hg) \wedge \omega^j(hg),$$

for all $g, h \in G$. Applying L_h^* to the second equation above we get

$$d(L_h^* \omega^k(hg)) = \sum_{1 \leq i<j \leq n} c^k_{ij}(hg) : L_h^* \omega^i(hg) \wedge L_h^* \omega^j(hg)$$

$$d\omega^k(g) = \sum_{1 \leq i<j \leq n} c^k_{ij}(hg) : \omega^i(g) \wedge \omega^j(g).$$

Hence from (1) we conclude $c^k_{ij}(hg) = c^k_{ij}(g)$, i.e., c^k_{ij} is a constant function. \qedsymbol