Part I. True or false. Justify your answer by giving a proof or counterexample. 10 points each.

1. The extension $\mathbb{Q}(\sqrt{2} + \sqrt{2})/\mathbb{Q}$ is normal.
2. Let $U_n(\mathbb{C})$ be the ring of upper triangular $n \times n$ matrices with entries in \mathbb{C}. Any irreducible $U_n(\mathbb{C})$-module is one dimensional over \mathbb{C}.
3. The abelian group \mathbb{Q}/\mathbb{Z} is flat.
4. A $\mathbb{C}[x, y]$-module is semisimple if and only if its restrictions to both of the subalgebras $\mathbb{C}[x]$ and $\mathbb{C}[y]$ are semisimple.
5. The cyclotomic polynomial $\Phi_{255}(x)$ reduced modulo 2 is irreducible as an element of $\mathbb{F}_2[x]$.

Part II. Longer problems. 10 points each.

1. Describe all proper subgroups of the symmetric groups S_n of order strictly more than $(n - 1)!$.
2. Let G be a finite group and let $H \subset G$ be a subgroup. Let $g \in G$ be an element such that no conjugate of g is contained in H. Prove that for any finite dimensional H-module V (over an arbitrary field) the trace of g in $\text{Ind}_G^H V$ is zero.
3. For a partially ordered set (X, \leq), let C_X be the corresponding category: the objects of C_X are the elements of X and there is a unique morphism $\theta : x \mapsto y$ if and only if $x \leq y$. For an order preserving map $f : X \to Y$, let $F_f : C_X \to C_Y$ be the corresponding functor. Viewing \mathbb{Z} and \mathbb{R} as partially ordered sets via the usual ordering \leq, the obvious embedding $i : \mathbb{Z} \to \mathbb{R}$ is an order preserving map. Find the right and left adjoints of the functor $F_i : C_\mathbb{Z} \to C_\mathbb{R}$, justifying your answer carefully.
4. Let $I \triangleleft \mathbb{C}[x_1, \ldots, x_n]$ be an ideal such that \sqrt{I} is maximal. Prove that $\mathbb{C}[x_1, \ldots, x_n]/I$ is finite dimensional over \mathbb{C}.
5. Let V be a finite dimensional vector space over a field F, and let $f : V \to V$ be a linear transformation. Prove that $2\text{tr}(S^2 f) = \text{tr}(f)^2 + \text{tr}(f^2)$.

\addtolength\textwidth{0.5in}