Your Name:

Conventions: all rings and algebras are assumed to be unital.

Part I. True or false? If true provide a brief explanation, if false provide a counterexample (10 points each):

1. Let $\mathcal{F}, \mathcal{G} : \mathbf{A} \to \mathbf{B}$ be isomorphic functors and A_1, A_2 be objects of \mathbf{A}. Investigate each of the following for true/false:
 (i) $\mathcal{F}(A_1) = \mathcal{F}(A_2)$ if and only if $\mathcal{G}(A_1) = \mathcal{G}(A_2)$.
 (ii) $\mathcal{F}(A_1) \cong \mathcal{F}(A_2)$ if and only if $\mathcal{G}(A_1) \cong \mathcal{G}(A_2)$.

2. If A is a commutative algebra over an algebraically closed field then all irreducible A-modules are 1-dimensional.

3. If R is an artinian ring having no non-zero nilpotent elements then R is a direct sum of division rings.

4. Let $\varphi : X \to Y$ be a morphism of affine algebraic sets. Then φ is surjective if and only if $\varphi^* : \mathbb{F}[Y] \to \mathbb{F}[X], f \mapsto f \circ \varphi$.

5. If R, R' are rings, $\mathcal{F} : R\text{-Mod} \to R'\text{-Mod}$ is a functor left adjoint to a functor $\mathcal{G} : R'\text{-Mod} \to R\text{-Mod}$, and P is a projective R-module, then $\mathcal{F}P$ is a projective R'-module.

Part II. Prove the following statements (10 points each):

1. Prove for any vector spaces U and V we have an isomorphism of vector spaces
 $$\text{Hom}_\mathbb{F}(U, V^*) \to \text{Hom}_\mathbb{F}(V, U^*), \ f \mapsto f^* \circ \iota_V,$$
 where $\iota_V : V \to V^{**}$ is the natural embedding.

2. Let N be a normal subgroup of a finite group G and P be a Sylow p-subgroup of G. Then $P \cap N$ is a Sylow p-subgroup of N, and every Sylow p-subgroup of N is of this form.

3. Let V be an R-module. A family $(V_i)_{i \in I}$ of submodules of V is called a directed system of submodules if for any $i, j \in I$ there exists $k \in I$ such that $V_i \subseteq V_k$ and $V_j \subseteq V_k$. Prove that V is finitely generated if and only if the union $\bigcup_{i \in I} V_i$ of any
directed set of proper submodules is proper. Deduce that a finitely generated module has a maximal proper submodule.

4. An element g of a finite group G is conjugate to g^{-1} if and only if $\chi(g)$ is a real number for every character χ of G.

5. Let G be a finite group of automorphisms of the ring A, and $R = A^G = \{a \in A \mid ga = a \text{ for all } g \in G\}$ be the subring of invariants. Then the ring extension $R \subseteq A$ is integral.