1 Fall Differential Geometry, 2015

Problem 1 Recall that complex projective space $\mathbb{C}P^2$ is the space obtained as a quotient of $\mathbb{C}^3 \setminus \{0\}$ under the equivalence relation $z \sim w$ if there is $\lambda \in \mathbb{C}$ such that $z = \lambda w$.

- 1. Show that $\mathbb{C}P^2$ is a smooth manifold by exhibiting a smooth atlas for $\mathbb{C}P^2$.
- 2. Show that $\mathbb{C}P^2$ is compact and connected.

Problem 2 Give an expression for the Ricci curvature of the vector ∂_1 i.e

 $Ric(\partial_1, \partial_1)$

in terms of derivatives of Christoffel symbols at the origin of a normal coordinate system.

Problem 3 Suppose that (M^n, g) is a open Riemannian manifold without boundary, and f is a smooth function with the property that

$$\int_{\partial\Omega} \nabla f \cdot \vec{n} d\tilde{V} > 0$$

for every set Ω that is diffeomorphic to a closed ball, where \vec{n} is the exterior normal and $d\tilde{V}$ is the volume form on the boundary $\partial\Omega$. Prove that

$$\Delta_g f(x) \ge 0$$
 for all $x \in M$.

Problem 4 Suppose (M, g) and (N, h) are two Riemannian manifolds, which are diffeomorphic. Which of the following must be shared by both M and N? Give a quick (2 to 3 sentence/line) proof, or provide a counterexample.

- 1. Compactness
- 2. Completeness
- 3. Sectional curvature lower bounds
- 4. Dimension of the manifold.
- 5. Triviality of the tangent bundle.

Problem 5 Prove that any compact manifold may be smoothly embedded in \mathbb{R}^N for some large N. Your proof should be essentially self-contained, not citing significant theorems.

Problem 6 Let $f : M \to \mathbb{R}$ be a smooth function on a smooth manifold, and let $p \in M$ be a critical point of f. A critical point is called a nondegenerate critical point if the matrix of second derivatives of f at p, with respect to a local coordinate system, is nonsingular. Prove that this notion of nondegeneracy is independent of the choice of coordinate system **Problem 7** Consider the space $Y = L^2(\mathbb{R}) \setminus \{0\}$.

- 1. Give a 'cocktail party' argument that Y is a "Banach Manifold"
- 2. Consider the space

$$X = \left\{ f \in L^2(\mathbb{R}) : \|f\|_{L^2}^2 = 1 \right\}.$$

Give an argument that X is also "Banach manifold", by giving a chart from a neighborhood of any point in X to a linear Banach space.

Problem 8 Let $M^2 \subset \mathbb{R}^3$ be the graph of a function f. Suppose that df = 0 at 0.

- 1. Write down a local tangent frame for the manifold M near 0 (the expression should be in terms of vectors in \mathbb{R}^3)
- 2. Prove that the mean curvature satisfies

$$H(0) = \frac{1}{2}\Delta f(0).$$

Problem 9 Let $f : \mathbb{R}^2 \to \mathbb{R}$ satisfy

$$|df|^2 \le \frac{x^2 + y^2}{1 + x^2 + y^2}.$$

Let $F : \mathbb{R}^2 \to \mathbb{R}^3$ be the map

$$F(x,y) = (x, y, f(x, y)).$$

Now consider the Minkowski metric

$$h = dx^2 + dy^2 - dz^2$$

on \mathbb{R}^3 . Is the image of F necessarily a complete manifold in (\mathbb{R}^3, h) ?