Q1. Let \(f \) be a nonnegative measurable function on \([0, 1]\) with Lebesgue measure \(m \).
 (1a) Prove that \(\int \int_{[0, 1]} f(x) \, dm(x) \leq \sum_{n=0}^{\infty} m(\{x, f(x) \geq n\}) \).
 (1b) Assume \(m(\{x, f(x) \geq t\}) \leq \frac{1}{1+t^2} \) for each \(t > 0 \). Prove that \(f \in L^p \) for \(p \in [1, 2) \).

Q2. Let \(A : X \to X \) be a linear operator on complex normed space \(X \). Assume \(\lambda \) is an eigenvalue of \(A^n \circ A \circ \cdots \circ A \) for some integer \(n \geq 2 \). Prove that one of the complex \(n \)-th roots of \(\lambda \) is an eigenvalue of \(A \).

Q3. Let \(\{f_n\}_{n=1}^{\infty} \) be a sequence of measurable functions on \([0, \pi]\) satisfying
 \[\int_0^{\pi} |f_n(x)|^2 \, dm(x) \leq 2015, \]
 where \(m \) is the Lebesgue measure. Suppose \(f_n \to 0 \) a.e. on \([0, \pi]\). Prove that
 \[\int_0^{\pi} |f_n(x)| \, dm(x) \to 0. \]
 (Hint: Use Egorov’s theorem and the Cauchy-Schwarz inequality.)

Q4. Let \((X, \mu)\) be a measure space and let \(f \in L^k(\mu) \) for some real number \(k \geq 1 \). Compute
 \[\lim_{n \to \infty} \int_X n^k \ln \left(1 + \left(\frac{|f|}{n} \right)^k \right) \, d\mu. \]
 (Hint: First show that there is a constant \(C > 0 \) such that \(\ln(1 + y) \leq Cy \) for \(y \in [0, \infty) \).)

Q5. Note that \(\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} \, dx = \pi \). Suppose \(f(x) \) is a bounded continuous function on \(\mathbb{R} \). Define for each \(\sigma \in (0, \infty) \)
 \[f_{\sigma}(x) := \frac{1}{\pi} \int_{-\infty}^{\infty} f \left(x + \frac{2\sigma t}{\sigma} \right) \frac{\sin^2 \sigma t}{\sigma^2} \, dt. \]
 Prove that on any finite interval \(x \in [a, b] \), the functions \(f_{\sigma}(x) \) converge uniformly to \(f(x) \) as \(\sigma \to +\infty \).
Q6. Let A be a bounded linear operator on real Hilbert space H. Recall that the adjoint operator A^* is defined by $(Ax, y) = (x, A^*y)$ for $x, y \in H$.

(6a) Show that norm $\|A^*\| = \|A\|$.
(6b) Show that norm $\|A^*A\| = \|AA^*\| = \|A\|^2$.

Q7. Find the Laurent expansion of the function

$$f(z) = \frac{1}{(z + 1)(z + 2)}$$

which holds in $2 < |z - 1| < 3$.

Q8. Let $f(z)$ be a polynomial of degree 2015. Prove that the sum of the residues of $\frac{1}{f(z)}$ at all the zeros of $f(z)$ must be zero.

Q9. Compute

$$\int_0^\infty \frac{x^\alpha}{x^2 + x + 1} \, dx$$

where α is a real number satisfying $0 < \alpha < 1$.
