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Relative to a nondegenerate metric of signature (p, q), an algebraic curvature

tensor is said to be IP if the associated skew-symmetric curvature operator R(π)

has constant eigenvalues and if the kernel of R(π) has constant dimension on the

Grassmanian of nondegenerate oriented 2-planes. A pseudo-Riemannian manifold

with a nondegenerate indefinite metric of signature (p, q) is said to be IP if the

curvature tensor of the Levi-Civita connection is IP at every point; the eigenvalues

are permitted to vary with the point. In the Riemannian setting (p, q) = (0, m), the

work of Gilkey, Leahy, and Sadofsky and the work of Ivanov and

Petrova have classified the IP metrics and IP algebraic curvature tensors if the

dimension is at least 4 and if the dimension is not 7. We use techniques from

algebraic topology and from differential geometry to extend some of their results to

the Lorentzian setting (p, q) = (1, m− 1) and to the setting of metrics of signature

(p, q) = (2, m− 2).
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CHAPTER I

INTRODUCTION

In differential geometry, the Riemann curvature tensor carries crucial geometric

information about the manifold. Because the full curvature tensor is quite com-

plicated, one often uses the curvature tensor to define natural endomorphisms of

the tangent bundle. The Jacobi, the Ricci, the Stanilov, the Szabó, and the skew-

symmetric curvature operators are such examples; we refer to §1.5 for further details.

Assume that one of these operators has constant eigenvalues on the appropriate do-

main; one wants to determine the possible underlying geometries. We shall focus

on the skew-symmetric curvature operator in the pseudo-Riemannian setting in this

thesis.

§1.1 Algebraic Curvature Tensors

Let M be a smooth connected manifold of dimension m. We assume there is

an indefinite nondegenerate metric gM on the tangent bundle TM . Fix a point P

on the manifold M and let V := TPM . The metric gM induces a nondegenerate

symmetric bilinear form on V . We can choose an orthonormal basis {vi} for V

so that gM (vi, vj) = 0 for i 6= j, so that gM (vi, vi) = −1 for i ≤ p, and so that

gM (vi, vi) = 1 for i > p. Let q = m− p be the complementary index; the metric gM

is said to have signature (p, q); this is independent of the choices made. We shall

suppose henceforth that p ≤ q since we can always replace gM by −gM and reverse

the roles of p and of q. M is called a pseudo-Riemannian manifold.
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Let O(p, q) be the group of all linear maps from V to V which preserve gM and

let so(p, q) be the associated Lie algebra. We have:

O(p, q) = {A ∈ End(V ) : gM(Au,Av) = gM (u, v) ∀u, v ∈ V }, and

so(p, q) = {A ∈ End(V ) : gM (Au, v) + gM (u,Av) = 0 ∀u, v ∈ V }.

1.1.1 The Riemann curvature tensor. Let ∇ be the Levi-Civita connection on

TM and let the associated curvature operator R be defined by the identity:

R(x, y) := ∇x∇y −∇y∇x −∇[x,y].

Then R : TPM ⊗R TPM → End(TPM) has the curvature symmetries:

(1.1.1.a)

R(x, y) = −R(y, x),

gM (R(x, y)z, w) = gM (R(z, w)x, y), and

R(x, y)z +R(y, z)x+R(z, x)y = 0.

The equations displayed in (1.1.1.a) imply gM (R(x, y)z, w) = −gM (R(x, y)w, z).

Thus in particular, we have that R(x, y) ∈ so(p, q).

1.1.2 Algebraic curvature tensors. We now go to a more general framework by

studying a purely algebraic problem and working with algebraic curvature tensors

- once the algebraic structure of these tensors has been investigated, we will then

study the corresponding geometric questions. We shall say that R ∈ ⊗4(TPM) is

an algebraic curvature tensor if the equations displayed in (1.1.1.a) are satisfied.

We note that the Riemann curvature tensor R of a manifold (M, gM) defines an

algebraic curvature tensor on TPM for every P in M ; conversely, given a metric gP

on TPM and an algebraic curvature tensor RP , there exists the germ of a metric g̃M

on M extending gP so that RP is the curvature tensor of g̃M at P . Consequently

we conclude that every algebraic curvature tensor is geometrically realizable at P.
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Thus the study of algebraic curvature tensors is important in differential geometry.

We refer to Gilkey [44] and Osserman [72] for expository accounts of this field and

for a more detailed bibliography than can be presented here.

1.1.3 Definition. Let Rp,q be the vector space of real (p+ q)-tuples of the form

x = (x1, ..., xp, xp+1, ..., xp+q) with the nondegenerate symmetric bilinear form g

g(x, y) := −
∑p

i=1 xiyi +
∑p+q

i=p+1 xiyi and |x|2 := g(x, x).

By choosing a suitable orthonormal basis we may identify (V, gM) with (Rp,q, g).

Let π be a 2-plane in Rp,q. We say π is nondegenerate if the restriction of g to

π is nondegenerate. Let {x, y} be a basis for π; π is nondegenerate if and only

if g(x, x)g(y, y) − g(x, y)2 6= 0. We say that π is a 2-plane of type (0, 2), (1, 1),

or (2, 0) if the restriction of g to π has this signature. Let Gr+(r,s)(R
p,q) be the

manifold of nondegenerate oriented 2-planes of type (r, s) in Rp,q where r + s = 2.

Let Gr+2 (Rp,q) be the manifold of nondegenerate oriented 2-planes in Rp,q. Let
.
t

denote the disjoint union. We shall need the following decomposition later

Gr+2 (Rp,q) = Gr+(0,2)(R
p,q)

.
t Gr+(1,1)(R

p,q)
.
t Gr+(2,0)(R

p,q).

§1.2 IP Algebraic Curvature Tensors and IP Metrics

1.2.1 The skew-symmetric curvature operator. Let {x, y} be an oriented basis

for π ∈ Gr+2 (Rp,q). We define the skew-symmetric curvature operator R(π) by

R(π) := |g(x, x)g(y, y)− g(x, y)2|− 1
2R(x, y);

R(π) is independent of the particular basis chosen. This operator was introduced

in the Riemannian context by Ivanova and Stanilov [61].
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1.2.2 Definition. An algebraic curvature tensor R is said to be IP if (a) R(π)

has constant eigenvalues on all π ∈ Gr+2 (Rp,q) and (b) dim KerR(π) is constant on

all π ∈ Gr+2 (Rp,q). A metric gM on a manifold M is said to be IP if R(π) is IP at

every point P ∈M ; the eigenvalues are permitted to depend on P ∈M .

1.2.3 Remark: In Definition 1.2.2, for p > 0, we do not have an orthogonal

direct sum decomposition of Rp,q into KerR(π) and RangeR(π). This phenome-

non is caused by the Jordan normal form associated with the zero eigenvalues of

R(π). So R(π) having constant eigenvalues on all π ∈ Gr+2 (Rp,q) does not imply

rankR(π) is constant on all π ∈ Gr+2 (Rp,q). This is a crucial distinction between

the Riemannian setting and the pseudo-Riemannian setting. But by condition (b),

we have dimRangeR(π) = p+ q − dim KerR(π) is constant on all π ∈ Gr+2 (Rp,q).

Thus rankR := rankR(π) is a well defined constant on all π ∈ Gr+2 (Rp,q). A precise

replacement of condition (a) in Definition 1.2.2 is given in Theorem 2.1.1, this uses

unpublished work of Gilkey.

IP algebraic curvature tensors and IP metrics were first studied by Ivanov and

Petrova [59] in the context of four dimensional Riemannian geometry. Subsequently

Gilkey [45], and Gilkey, Leahy and Sadofsky [48] classified the IP algebraic curvature

tensors and IP metrics in the Riemannian setting except in dimension 7; some partial

results regarding dimension 7 can be found in Gilkey and Semmelman [49].

1.2.4 Definition. Let C be a nonzero constant and let φ be a linear map of Rp,q.

(C, φ) is said to be an admissible pair if φ2 = ε · id and if g(φ(u), φ(v)) = ε · g(u, v)

where ε = ±1. If ε = 1, then φ is said to be an unipotent (of order 2) isometry; if

ε = −1, then φ is said to be a unipotent (of order 4) para-isometry. If (C, φ) is an

admissible pair, we define

RC,φ(x, y)z := C{g(φ(y), z)φ(x)− g(φ(x), z)φ(y)}.
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We remark that ε = −1 is only possible when p = q. Later in §1.4, Theorem D

asserts that RC,φ is an IP algebraic curvature tensor.

1.2.5 Note: If φ is the identity map, then RC := RC,φ has constant sectional

curvature C since the sectional curvature K(π,RC) is given by

K(π,RC) :=
RC(x, y, y, x)

g(x, x)g(y, y)− g(x, y)2
= C.

1.2.6 Constant sectional curvature manifolds. Let r > 0. Let
Sr(Rp,q) := {v ∈ Rp,q : |v|2 = r2}, an

Hr(Rp+1,q−1) := {v ∈ Rp+1,q−1 : |v|2 = −r2}
be the pseudo-Riemannian spheres and the hyperbolic spaces. These are complete

pseudo-Riemannian manifolds of signature (p, q) which have constant sectional cur-

vatures r−2 and −r−2 respectively; we refer to Wolf [90] and O’Neill [71] for further

details. The following theorem characterizes constant sectional curvature manifolds

in the pseudo-Riemannian setting up to local isometry; we refer to [90] for the proof

of the theorem.

1.2.7 Theorem. Let M be a pseudo-Riemannian manifold of signature (p, q)

with p+ q ≥ 2. Let K be a real number. The following conditions are equivalent.

(1) M has constant sectional curvature K.

(2) If x ∈M , then there exist local coordinates {xi} on a neighborhood of x in which

the metric is given by

ds2 =
∑

i εi · dx2
i

{1 + K
4

∑
i εi · x2

i }2
, where εi = ±1.

(3) If x ∈M , then x has a neighborhood which is isometric to an open set on some

Sr(Rp,q) if K > 0, Rp,q if K = 0, Hr(Rp,q) if K < 0.

We shall need another well known result about the pseudo-Riemannian spheres

later in Chapter Five. We omit the proof of the theorem; again we refer to [90, 71]

for details.

1.2.8 Theorem. Let p ≥ 0 and q ≥ 1. We have that S(Rp,q) := S1(Rp,q) is

diffeomorphic to Rp × Sq−1.
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§1.3 The Classification of IP Manifolds in the Riemannian Setting

In this section, we review previous work of [45], [48], and [59] on the classification

of IP algebraic curvature tensors and IP metrics in the Riemannian setting. The

following result classifies IP algebraic curvature tensors in the Riemannian setting

if m = 5, 6 or if m ≥ 8:

1.3.1 Theorem (Gilkey [45], Gilkey, Leahy and Sadofsky [48]) Let R be an IP

algebraic curvature tensor. Assume that (p, q) = (0, m). Let m ≥ 5.

(1) If m 6= 7, then rankR ≤ 2.

(2) If rankR = 2, then there exists an admissible pair (C, φ) with φ an unipotent

(of order 2) isometry of R0,m so that R = RC,φ.

The four dimensional case is exceptional. We have the following classification

in the Riemannian setting if m = 4:

1.3.2 Theorem (Ivanov and Petrova [59]) Let R be an IP algebraic curvature

tensor. Assume that (p, q) = (0, 4).

(1) If rankR = 2, then there exists an admissible pair (C, φ) with φ an unipotent

(of order 2) isometry of R0,4 so that R = RC,φ.

(2) If rankR = 4, then R is equivalent to a nonzero multiple of the “exotic” rank 4

tensor:

R1212 = 2, R1313 = 2, R1414 = −1, R2424 = 2, R2323 = −1,

R3434 = 2, R1234 = −1, R1324 = 1, R1423 = 2.

Theorems 1.3.1 and 1.3.2 classify the IP algebraic curvature tensors if m ≥ 4

and if m 6= 7. The corresponding classification of IP metrics is provided by the

following result:

1.3.3 Theorem (Gilkey [45], Gilkey, Leahy and Sadofsky [48]; Ivanov and Petrova

[59]) Let M be an IP Riemannian manifold of dimension m. Assume m ≥ 4. If
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m = 7, we further assume rankR = 2. Exactly one and only one of the following

assertions is valid for M :

(1) M has constant sectional curvature.

(2) M is locally a warped product:

ds2M = dt2 + f(t)ds2N

of an interval I with a Riemannian manifold N of dimension m− 1 which has

constant sectional curvature K 6= 0. Furthermore, the warping function f is

given by

f(t) = Kt2 + At+B,

where A and B are auxiliary constants so that 4KB−A2 6= 0 and that f(t) > 0

is a smooth function defined on I.

We sketch the proofs of Theorem 1.3.1 and Theorem 1.3.3 in the following

three steps for m 6= 4; the case m = 4 does not follow this pattern and is handled

separately.

Step 1: (Algebraic topology) Let R be an IP algebraic curvature tensor. Let

W0(R(π)) and W1(R(π)) be the kernel and the range of R(π) for π ∈ Gr+2 (R0,m).

Since R(π) has constant rank on Gr+2 (R0,m), Wi(R(π)) define vector bundles over

Gr+2 (R0,m). Since R(−π) = −R(π), Wi(R(−π)) = Wi(R(π)). Thus these bundles

descend to define vector bundles Vi over the unoriented Grassmannian Gr2(R0,m)

and over the real projective space RPm−2 ⊂ Gr2(R0,m). The cohomology algebras

of Gr2(R0,m) and RPm−2 and the K-theory of RPm−2 play an important role in

the analysis; this uses work of Adams [1] and Borel [18]. One studies the Stiefel-

Whitney classes of the bundles Vi to show that dimV1 = dimW1(R(π)) ≤ 2 if

m = 5, m = 6, or m ≥ 9; this restricts the eigenspace structure and shows that

R(π) has rank 2 if R 6= 0. The cases m = 7, 8 are exceptional, but some information

on the eigenspace structure can be obtained.
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Step 2: (Linear algebra) The map R(π) takes values in so(m). By Step 1, if R is

nontrivial, we may assume that R(π) has constant rank 2; Theorem 1.3.1 can then

be established using fairly standard techniques; the fact that R has rank 2 is crucial

to these arguments. We shall give a different proof from that given in [48] in chapter

V, as the proof given in [48] does not extend to the pseudo-Riemannian setting.

Step 3: (Differential geometry) Let R be an IP metric. One uses Theorem 1.3.1 to

construct an isometry φ of the tangent bundle with φ2 the identity. Let F± be the

distributions defined by the ±1 eigenspaces of φ; these are orthogonal. One uses

the second Bianchi identity to show these distributions are integrable and to show

that one of them has dimension 1. Theorem 1.3.3 then follows.

1.3.4 Remark: Theorem 1.3.1 and Theorem 1.3.3 show that not every IP alge-

braic curvature tensor is geometrically realizable by an IP metric; RC,φ is geomet-

rically realizable by an IP metric which does not have constant sectional curvature

if and only if one of the eigenspaces of φ has dimension 1.

§1.4 Main Results of the Thesis

The results discussed in §1.3 are in the Riemannian setting where (p, q) = (0, m);

the fact that the metric in question is positive definite is used at several crucial

points in the argument. We shall extend these results to the Lorentzian setting

(p, q) = (1, m−1) if m ≥ 10. We shall also obtain some partial results in the higher

signature setting.

1.4.1 Definition. Let W0(R(π)) := KerR(π) and let W1(R(π)) := RangeR(π).

An algebraic curvature tensor R is said to be spacelike (or timelike) if W1(R(π)) is

spacelike (or timelike) for every spacelike 2-plane π. If R is a rank 2 IP algebraic

curvature tensor, then R is said to be mixed if W1(R(π)) is of type (1, 1) for every
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spacelike 2-plane π; R is said to be null if W1(R(π)) is a degenerate 2-plane for

every spacelike 2-plane π and R(π) has only the zero eigenvalue. We note that in

the Lorentzian setting a degenerate 2-plane is spanned by a spacelike vector and a

null vector. We shall use this fact later in chapter IV.

We can now state the seven main results of the thesis.

Theorem A. Let R be an IP algebraic curvature tensor on Rp,q.

(1) If p = 1 and if q ≥ 9, then rankR ≤ 2.

(2) If p = 2 and if q ≥ 11, then rankR ≤ 4. Furthermore, if q and 2 + q are not

powers of 2, then rankR ≤ 2.

(3) There exists a rank 4 IP algebraic curvature tensor if (p, q) = (2, 2).

Theorem A bounds the rank of an IP algebraic curvature tensor. In the rank 2

Lorentzian setting, we have a trichotomy:

Theorem B. Let R be a rank 2 Lorentzian IP algebraic curvature tensor and let

m ≥ 4. Exactly one and only one of the following assertions is valid for R:

(1) For all π ∈ Gr+(0,2)(R
1,m−1), we have that W1(R(π)) is spacelike and that R(π)

has two nontrivial purely imaginary eigenvalues. Thus R is spacelike.

(2) For all π ∈ Gr+(0,2)(R
1,m−1), we have that W1(R(π)) is of type (1, 1) and that

R(π) has two nontrivial real eigenvalues. Thus R is mixed.

(3) For all π ∈ Gr+(0,2)(R
1,m−1), we have that W1(R(π)) is degenerate with a positive

semi-definite metric and that R(π) has only the zero eigenvalue. Thus R is

null.

Theorem B shows the trichotomy of rank 2 Lorentzian IP algebraic curvature

tensors. The following theorem asserts that most rank 2 Lorentzian IP algebraic

curvature tensors are spacelike.

Theorem C. Assume that m ≥ 4. Let R be a rank 2 Lorentzian IP algebraic

curvature tensor.
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(1) If R is mixed, then m = 4, 5, 8, or 9.

(2) If R is null, then m = 5 or 9.

We have the following classification of rank 2 IP algebraic curvature tensors

which are spacelike or timelike with certain dimensional restraint.

Theorem D.

(1) If (C, φ) is an admissible pair, then RC,φ is a rank 2 IP algebraic curvature

tensor which is spacelike if ε = 1 and timelike if ε = −1.

(2) Let R be an IP algebraic curvature tensor on Rp,q. Suppose that q = 6 or that

q ≥ 9. Suppose that R is spacelike or timelike and that R has rank 2. Then

there exists an admissible pair (C, φ) so that R = RC,φ.

Let φ be an unipotent (of order 2) isometry of Rp,q. Let r±(φ) be the associated

dimensions of the ±1 eigenspaces of φ. The following theorem shows that not every

IP algebraic curvature tensor is geometrically realizable by an IP metric:

Theorem E. Assume m ≥ 4. If (M, gM) is an IP pseudo-Riemannian manifold

and if the curvature tensor R at a point P ∈M is given by RC,φ for some admissible

(C, φ), then r+(φ) ≤ 1 or r−(φ) ≤ 1.

We now generalize the construction of IP metrics given in Theorem 1.3.3.

Theorem F. Let ε = ±1. Let I ⊂ R be a connected open interval. Let N be the

germ of a pseudo-Riemannian manifold of constant sectional curvature K 6= 0. Let

A and B be auxiliary constants so that 4KB−εA2 6= 0 and that fε(t) := εKt2+At+B

is a smooth nonzero function on I. Let M := I ×N and let gM := εdt2 + fε(t)gN .

Then gM is a rank 2 IP metric on M .

As a consequence of Theorems D, E, and F, we have the following classification

of IP algebraic curvature tensors and rank 2 IP metrics in the Lorentzian setting

for m ≥ 10.

Theorem G. Assume that m ≥ 10.
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(1) Let R be an IP algebraic curvature tensor on R1,m−1. R is nontrivial if and

only if there exists an admissible pair (C, φ) with φ an unipotent (of order 2)

isometry of R1,m−1 so that R = RC,φ.

(2) If gM is a rank 2 Lorentzian IP metric, then exactly one and only one of the

following assertions is valid for gM :

(2a) gM is a metric of constant sectional curvature C 6= 0.

(2b) gM is locally isometric to a warped product metric of the form given in

Theorem F.

1.4.2 Outline of the thesis. In chapter II, we prepare the necessary background

material from analysis and algebraic topology for our later studies. In §2.1, we use

unpublished work of Gilkey to prove Theorem 2.1.1. We also establish a technical

lemma relating the two Lie algebras so(p, q) and so(p + q). In §2.2, we study the

topology of the Grassmannians Gr+(r,s)(R
p,q) and Gr(r,s)(Rp,q). In §2.3, we define

the Stiefel-Whitney classes of a real vector bundle and introduce some results from

of K-theory. We recall the calculation of K̃O(RPn) due to Adams [1]. This will

play a crucial role in bounding the rank of IP algebraic curvature tensors. In §2.4,

we recall the calculation of H∗(Gr2(Rn);Z2) due to Borel [18]. We also introduce

the Steenrod squares. In §2.5, we introduce the splitting principle and apply this

principle to prove some technical lemmas which are used to determine the possible

forms of the Stiefel-Whitney classes of certain vector bundles. In §2.6, we establish

two important lemmas. The first lemma determines for what values of q, there

exists a nonsingular bilinear map from Rq × Rq to Rq+1. The second lemma is a

continuity result which is needed later in chapter V.

In chapter III, we prove Theorem A by bounding the rank of IP algebraic

curvature tensors in some cases. In §3.1-3.2, to study the rank, we introduce certain

vector bundles over the Grassmannians and the real projective spaces so that they
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encode much of the information about R(π). Our approach is analogous to Step 1 in

§1.3. The works of Adams [1], Borel [18], Gilkey, Leahy and Sadofsky[48], and Stong

[84] play important roles in our discussion. This will prove Theorem A (1) and the

first part of Theorem A (2). In §3.3-3.4, we complete the proof of Theorem A (2).

In §3.5, we investigate some lower dimensional cases in the Lorentzian setting. In

§3.6, we prove Theorem A (3).

In chapter IV, we prove Theorems B and C. In §4.1, we establish the trichotomy

of rank 2 Lorentzian IP algebraic curvature tensors; this proves Theorem B. In §4.2,

we assume R is mixed or null and use the first lemma established in §2.6 to show

that q = 3, q = 4, q = 7, or q = 8. Once again algebraic topology plays a crucial

role in our analysis. This proves Theorem C (1). In §4.3, we complete the proof

of Theorem C by ruling out the exceptional cases q = 3 and q = 7 (i.e. m = 4 or

m = 8) if R is null.

In chapter V, we prove Theorems D and G (1). This chapter serves an analogous

role in Step 2 of §1.3. In §5.1, we begin with some algebraic preliminaries. In §5.2,

we prove the “common axis” lemma and then construct the admissible pair (C, φ)

so R = RC,φ. In §5.3, we prove Theorems D and G (1).

In chapter VI, we prove Theorems E and F and we complete the proof of

Theorem G. Our approach is analogous to Step 3 in §1.3. In §6.1, we prove Theorem

E. We follow the argument given by Gilkey, Leahy and Sadofsky [48]; the second

Bianchi identity enters at a crucial stage of the argument. In §6.2, we generalize

the warped product construction of Gilkey, Leahy and Sadofsky, and of Ivanov and

Petrova to higher signatures to prove Theorem F. In §6.3, we first show any C-φ

type metric is a warped product of an interval with a metric of constant sectional

curvature. We subsequently complete the proof of Theorem G in the seven steps:
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Step 1: Theorem A (1) implies the associated Lorentzian algebraic curvature tensor

R has rank at most 2.

Step 2: Theorem B implies either R is spacelike or R is mixed or R is null.

Step 3: Theorem C shows R is not mixed or null. Thus R is spacelike.

Step 4: Theorem D shows R is of C-φ type.

Step 5: By replacing φ by −φ if necessary, we may suppose r+ ≤ r−. By Theorem

E, either r+ = 0 or r+ = 1. If r+ = 0, then Mm has constant sectional curvature

C. We therefore assume that r+ = 1. Thus gM is a metric of C-φ type.

Step 6: By the technical lemma at the beginning of §6.3, any C-φ type metric is a

warped product of an interval with a metric of constant sectional curvature.

Step 7: Theorem F shows if (M, gM) is a warped product metric of an interval with

a metric of constant sectional curvature, then (M, gM) has the desired form. This

completes the classification. In §6.4, we discuss the orthogonal equivalence of the

curvature tensors RC,φ.

1.4.3 Future research. We have classified the IP algebraic curvature tensors and

IP metrics in the Lorentzian setting if m ≥ 10. We plan to use the second Bianchi

identity to study the appropriate integrability results and prove every rank 2 IP

metric is locally isometric to one of the metrics constructed in Theorem F in the

higher signature setting. The possible existence of rank 2 mixed or null Lorentzian

IP algebraic curvature tensors still needs to be explored in certain exceptional di-

mensions. We also will pursue the classification of IP algebraic curvature tensors

in higher signatures. We will study whether or not there exist “exotic” IP alge-

braic curvature tensor of rank 4 when (p, q) = (1, 3). We will also study whether

or not there exist “exotic” IP algebraic curvature tensor of rank 4 arising from the

unipotent (of order 4) para-isometry when (p, q) = (2, 2).
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§1.5 Other Operators

We conclude chapter I by giving a brief summary of some related results. We

follow the discussion given in [44] on these topics.

1.5.1 The Jacobi operator. Let R be the curvature of a connected Riemannian

manifold M of dimension m. If x is a unit tangent vector, let JR(x) : y → R(y, x)x

be the Jacobi operator. The Jacobi operator is an essential ingredient in the study

of Jacobi vector fields, geodesic sprays and conjugate points. If M is a local 2-point

homogeneous space, then the local isometries of M act transitively on the bundle

of unit tangent vectors so the Jacobi operator has constant eigenvalues. Osserman

conjectured [72] that the converse might hold. Chi [25] showed this to be the case if

m is odd, if m ≡ 2 mod 4, or if m = 4; the case m = 4k+ 4 for k ≥ 1 remains open

in this conjecture. Recently Rakić [76] has established a duality result showing:

1.5.2 Theorem (Rakić) Let R be an Osserman algebraic curvature tensor and

let x and y be unit vectors. If JR(x)y = λy, then JR(y)x = λx.

There is an analogous duality for the skew-symmetric curvature operator as we

shall see in Remark 5.3.3 in chapter V.

It is also known that a Lorentzian Osserman algebraic curvature tensor has

constant sectional curvature, we refer to Blažić, Bokan, Gilkey, and Rakić [9], and

Garcia-Rio, Vázquez-Abal and Vázquez-Lorenzo [38]. The situation in the higher

signature setting is much more complicated. For example, there exist Osserman

pseudo-Riemannian metrics which are not homogeneous; see the survey article [10]

for further details.

1.5.3 The Stanilov operator. Ivanova and Stanilov [61] defined a higher order

generalization of the Jacobi operator. Let Grp(Rm) be the Grassmannian of unori-

ented p-planes in Rm. We define:

JR;p(π) =
∫

x∈π:|x|=1
JR(x) dx.
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Let {xi}p
i=1 be an orthonormal basis for π. Then, modulo a suitable normalizing

constant which plays no role, we have that

JR;p(π) :=
∑

i

JR(xi).

This sum is independent of the orthonormal basis chosen. An algebraic curvature

tensor R is said to be p-Osserman if the eigenvalues of JR;p are constant onGrp(Rm);

similarly, a Riemannian manifold (Mm, g) is said to be p-Osserman if the eigenvalues

of JR;p are constant on Grp(TMm). If R is p-Osserman, then R is Einstein and

(m− p)-Osserman; see [47] for details. One has a complete classification result [43].

1.5.4 Theorem (Gilkey [43]) Let 2 ≤ p ≤ m− 2.

(1) Let R be a p-Osserman algebraic curvature tensor. If m is odd, then R has

constant sectional curvature. If m is even, then either R has constant sectional

curvature or there exists an almost complex structure c on Rm so that R = λcRc

with Rc(x, y)z := g(y, cz)cx− g(x, cz)cy − 2g(x, cy)cz.

(2) Let (Mm, g) be a p-Osserman Riemannian manifold. Then (Mm, g) has

constant sectional curvature.

1.5.5 The Szabó operator. If x is a unit tangent vector, then the Szabó Operator

is defined by SR(x) : y → (∇xR)(y, x)x. This operator is self-adjoint. Szabó [85]

proved the following result:

1.5.6 Theorem (Szabó [85])

(1) If SR has constant eigenvalues on Sm−1, then ∇R = 0.

(2) Let (Mm, g) be a Riemannian metric so that SR has constant eigenvalues on

S(TMm). Then (Mm, g) is a local symmetric space.
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CHAPTER II

SOME ANALYTICAL AND TOPOLOGICAL

BACKGROUND MATERIAL

In chapter II, we present some basic background material and prove some basic

lemmas we shall need later. Here is a brief outline of chapter II. In §2.1, we follow

the argument due to Gilkey to show that for R IP, the eigenvalues of R(π) are

independent of the plane type of π. This permits us to change the domain of R. In

Lemma 2.1.2, we show there exists a rank preserving linear isomorphism between

the two Lie algebras so(p, q) and so(p + q). So from the rank point of view, this

permits us to change the range of R. We shall need these facts in chapter III when

we rephrase the problem in the language of vector bundles. In §2.2, we study the

topology of the Grassmannians Gr+(r,s)(R
p,q) and Gr(r,s)(Rp,q). In §2.3, we define

the Stiefel-Whitney classes of a real vector bundle. We recall the calculation of

the real K-theory groups of RPn due to Adams [1]. In §2.4, we recall the work of

Borel [18] on H∗(Gr2(Rn);Z2). We also introduce the Steenrod squares. In §2.5, we

introduce a very important computational tool for characteristic classes in Theorem

2.5.5 (The splitting principle). Lemmas 2.5.7, 2.5.8, and 2.5.9 are applications of

the splitting principle. In §2.6, we establish two important technical lemmas which

are needed in chapter IV and chapter V.
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§2.1 The Eigenvalues of IP Algebraic Curvature Tensors

2.1.1 Theorem. Let R be an algebraic curvature tensor. The following conditions

are equivalent:

(1) R has constant eigenvalues on all π ∈ Gr+(0,2)(R
p,q). (Assume q ≥ 2).

(2) R has constant eigenvalues on all π ∈ Gr+(1,1)(R
p,q). (Assume p ≥ 1 and q ≥ 1).

(3) R has constant eigenvalues on all π ∈ Gr+(2,0)(R
p,q). (Assume p ≥ 2).

Furthermore R has constant eigenvalues on the set of nondegenerate 2-planes.

Proof. The following argument is due to Gilkey. Let

F2(Rp,q) := {(u, v) ∈ Rp,q ×Rp,q : g(u, u)g(v, v)− g(u, v)2 6= 0}

be the set of frames for the nondegenerate 2-planes in Rp,q. We can decompose:

Gr+2 (Rp,q) = Gr+(0,2)(R
p,q)

.
t Gr+(1,1)(R

p,q)
.
t Gr+(2,0)(R

p,q), an

F2(Rp,q) = F(0,2)(Rp,q)
.
t F(1,1)(Rp,q)

.
t F(2,0)(Rp,q).

The frames in F(r,s)(Rp,q) span oriented 2-planes of type (r, s) in Gr+(r,s)(R
p,q). If

(u, v) ∈ F2(Rp,q), let π(u, v) be the oriented 2-plane spanned by u and v. The map

π : F2(Rp,q) → Gr+2 (Rp,q) is a principal bundle with structure group GL+
2 (R). Let

α(u, v) := R2(π(u, v)) =
R2(u, v)

g(u, u)g(v, v)− g(u, v)2
.

The eigenvalues of R(π) are constant on Gr+2 (Rp,q) if and only if the eigenvalues

of α(u, v) are constant on F2(Rp,q). Let Ci(u, v) := Tr{α(u, v)i}; the eigenvalues of

α(u, v) are constant on F2(Rp,q) if and only if the functions Ci(u, v) are constant

on F2(Rp,q).

We complexify and extend the tensors R and g to the tensors Rc and gc which are

complex and multilinear. The role of (p, q) of course disappears once we complexify.

We use Rc to define an associated curvature operator

Rc(z1, z2) : ⊗2(Cp+q) →Mp+q(C)
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which satisfies the defining identity:

gc(Rc(z1, z2)z3, z4) = Rc(z1, z2, z3, z4).

We complexify to define

FC
2 := {(z1, z2) ∈ Cp+q × Cp+q : gc(z1, z1)gc(z2, z2)− gc(z1, z2)2 6= 0}, an

αc(z1, z2) :=
R2

c(z1, z2)
gc(z1, z1)gc(z2, z2)− gc(z1, z2)2

on FC
2 .

We note that FC
2 is a nonempty connected open dense subset of the complex vector

space Cp+q × Cp+q = C2(p+q); we refer to Gunning and Rossi [55] for details. If

π ⊂ Cp+q is closed under addition and under scalar multiplication by R and if π

has R dimension 2, then π is said to be a real 2-plane in Cp+q .

Let {ui, vi} for i = 1, 2 be two R bases for a real 2-plane π. We must show

that if (u1, v1) ∈ FC
2 , then (u2, v2) ∈ FC

2 and αc(u1, v1) = αc(u2, v2). We argue as

follows. Choose constants a, b, c, d ∈ R with ad − bc 6= 0 so u2 = au1 + bv1 and so

v2 = cu1 + dv1. Since (u1, v1) ∈ FC
2 , we have gc(u1, u1)gc(v1, v1)− gc(u1, v1)2 6= 0.

We compute:

gc(u2, u2)gc(v2, v2)− gc(u2, v2)2

= gc(au1 + bv1, au1 + bv1)gc(cu1 + dv1, cu1 + dv1)− gc(au1 + bv1, cu1 + dv1)2

= (ad− bc)2{gc(u1, u1)gc(v1, v1)− gc(u1, v1)2} 6= 0.

Thus we have (u2, v2) ∈ FC
2 . Similarly, we compute αc(u1, v1) = αc(u2, v2).

We say that a real 2-plane π in Cp+q is nondegenerate if there exists a R basis

(u, v) ∈ FC
2 for π; this is independent of the basis chosen as noted above. Note that

not every real 2-plane is nondegenerate. We let αc(π) := αc(u, v) be this common

value. We extend Ci to the complexification by defining Ci(u, v) := Tr{αc(u, v)i};

Ci are holomorphic functions on FC
2 . Note that

FC
2 ∩Rp,q = F2(Rp,q) = F(0,2)(Rp,q)

.
t F(1,1)(Rp,q)

.
t F(2,0)(Rp,q).
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If F(r,s)(Rp,q) is nonempty and if Ci are constant on F(r,s)(Rp,q), then the holo-

morphic functions Ci are constant on the nonempty open subset F(r,s)(Rp,q) of

FC
2 . Since the nonempty subset FC

2 of C2(p+q) is open and connected, the iden-

tity Theorem asserts that Ci are constant on the whole domain FC
2 and hence on

F2(Rp,q). �

For simplicity, we shall henceforth use so(m) for so(0, m) and use Rm for R0,m.

We shall need the following technical result.

2.1.2 Lemma. There exists a rank preserving linear isomorphism T from so(p, q)

to so(p+ q).

Proof. As noted in §1.1.3, we can choose coordinates x = (x1, ..., xp, xp+1, ..., xp+q)

on Rp,q so that

g(x, x) = −x2
1 − ...− x2

p + x2
p+1 + ...+ x2

p+q.

Let ge be the standard Euclidean metric. Let

T (x1, ..., xp, xp+1, ..., xp+q) := (−x1, ...,−xp, xp+1, ..., xp+q).

T is self-adjoint with respect to the inner product ge, T 2 is the identity. Furthermore

we have g(u, v) = ge(u, Tv) = ge(Tu, v).

The following assertions are equivalent:

(1) We have A ∈ so(p, q).

(2) We have g(Au, v) + g(u,Av) = 0 for all u, v.

(3) We have ge(Au, Tv) + ge(u, TAv) = 0 for all u, v.

(4) We have ge(TAu, v) + ge(u, TAv) = 0 for all u, v.

(5) We have TA ∈ so(p+ q).
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This chain of equivalences shows that the map T : A 7→ TA is a linear isomor-

phism between so(p, q) and so(p+ q); since T is invertible, rankA = rankTA. �

2.1.3 Definition. We say that a continuous map R : Gr+2 (Rp,q) → so(µ, ν) is

admissible if R(−π) = −R(π) and if rankR(π) is constant onGr+2 (Rp,q). Similarly a

continuous map R : Sn → so(µ, ν) is admissible if R(−v) = −R(v) and if rankR(v)

is constant on Sn. We let rankR(π) = r be this constant in this setting. Note that

if R is an IP algebraic curvature tensor, then the map π → R(π) is an admissible

map R from Gr+2 (Rp,q) to so(p, q).

The following lemma is an immediate consequence of Lemma 2.1.2; it permits

us to pass from the Lie algebra so(p, q) to the Lie algebra so(p+ q).

2.1.4 Lemma.

(1) The following assertions are equivalent:

(1a) There is an admissible map from Gr+2 (Rp,q) to so(p, q) of rank r.

(1b) There is an admissible map from Gr+2 (Rp,q) to so(p+ q) of rank r.

(2) The following assertions are equivalent

(2a) There is an admissible map from Sn to so(p, q) of rank r.

(2b) There is an admissible map from Sn to so(p+ q) of rank r.

§2.2 The Topology of the Grassmannians

The oriented GrassmannianGr+2 (Rp,q) and the corresponding unoriented Grass-

mannian Gr2(Rp,q) will play important roles in our study. We decompose

Gr+2 (Rp,q) = Gr+(0,2)(R
p,q)

.
t Gr+(1,1)(R

p,q)
.
t Gr+(2,0)(R

p,q), an

Gr2(Rp,q) = Gr(0,2)(Rp,q)
.
t Gr(1,1)(Rp,q)

.
t Gr(2,0)(Rp,q).

These spaces are noncompact if p 6= 0. We show in this section that Gr(0,2)(Rp,q)

and Gr(1,1)(Rp,q) strongly deformation retract to compact submanifolds.
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If 0 6= x ∈ Rp and if 0 6= y ∈ Rq, we let

π(x, y) := Span{(x, 0), (0, y)} ∈ Gr(1,1)(Rp,q).

The map (x, y) → π(x, y) extends to define an inclusion

(2.2.0.a) i : RP p−1 ×RP q−1 → Gr(1,1)(Rp,q).

For π ∈ Gr(1,1)(Rp,q), let S±(π) := {v ∈ π : g(v, v) = ±1} denote the set of

spacelike and timelike unit vectors. If v is a nonzero vector, we shall let 〈v〉 denote

the associated point in projective space. Our first goal is to construct a retract

r : Gr(1,1)(Rp,q) → RP p−1 ×RP q−1.

2.2.1 Lemma. Let π ∈ Gr(1,1)(Rp,q).

(1) The function ge(u, u) on S+(π) is minimized by exactly two vectors ±P+.

(2) The function ge(u, u) on S−(π) is minimized by exactly two vectors ±P−.

(3) Let P± = (x±, y±). The maps ψ− : π → 〈x−〉 and ψ+ : π → 〈y+〉 are smooth

maps from Gr(1,1)(Rp,q) to RP p−1 and RP q−1.

(4) The map r = ψ− × ψ+ is a retract to the inclusion i defined in equation

(2.2.0.a).

Proof. Let gπ and gπ
e denote the restrictions of the indefinite metric g and the

Euclidean metric ge to π; these are nondegenerate quadratic forms and gπ
e is positive

definite. We can diagonalize gπ with respect to gπ
e . We define an endomorphism

Aπ by gπ(u, v) = gπ
e (Aπu, v). Then Aπ is symmetric with respect to gπ

e ; since gπ

is indefinite, Aπ has eigenvalues λπ
± which have opposite signs. We can therefore

diagonalize Aπ; this permits us to choose orthogonal unit vectors vπ
± with respect

to the metric gπ
e so that if v = a+v

π
+ + a−vπ−, we have

ge(v, v) = a2
+ + a2

− and g(v, v) = λπ
+a

2
+ − λπ

−a
2
−.



22

Thus v ∈ S±(π) if (
√
λπ

+a+)2 − (
√
λπ−a−)2 = ±1; this identifies S±(π) with two

hyperbolas in R2 and the points closest to the origin with respect to the Euclidean

metric are ±P± := ±vπ
±/

√
λπ±; assertions (1) and (2) now follow.

If π ∈ Gr(1,1)(Rp,q), let ρπ be orthogonal projection with respect to the metric

ge on π and let O(π) be a sufficiently small neighborhood of π in Gr(1,1)(Rp,q) so

that ρπ is an isomorphism from τ to π for τ ∈ O(π). We use the isomorphism ρπ

to pull back the metrics gτ and gτ
e to π and to regard them as a smoothly varying

family of metrics on π parameterized by τ ∈ O(π). Since the eigenvalues λτ
± have

opposite signs, we can choose the diagonalizations and corresponding eigenvectors

to be smooth functions of τ ; pulling back these eigenvectors to τ using ρ−1
π then

shows that the vectors P±(τ) can be chosen to vary smoothly with τ at least locally.

The maps π → P− → x− and π → P+ → y+ are smooth. This construction is well

defined locally; globally, of course, there is no way to distinguish P from −P , i.e.

x− and y+ can not be defined globally. However, this indeterminacy vanishes once

we pass to the associated projective space, assertion (3) follows. The final assertion

is an immediate consequence of the definitions we have given in (2.2.0.a). �

2.2.2 Remark: We can also think of this process geometrically. Let O be a small

open set in Gr(1,1)(Rp,q). Choose a frame {v1, v2} for π ∈ O which is orthonormal

to the reference metric ge. This choice of frame permits us to view the metric g

as a varying family of indefinite quadratic forms on R2 which varies smoothly and

which is parameterized by O. The equations gπ(v, v) = ±1 define smoothly varying

families of hyperbolas and the unique points closed to the origin are the points ±P±

in question.

Let Gr+2 (Rν) := Gr+2 (R0,ν) and let Gr2(Rν) := Gr2(R0,ν); these are smooth

closed manifolds. We use the canonical inclusions Rq ↪→ Rp,q = Rp ⊕ Rq and
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Rp ↪→ Rp,q = Rp ⊕Rq to define canonical embeddings

Gr+2 (Rq) ↪→ Gr+(0,2)(R
p,q) an Gr+2 (Rp) ↪→ Gr+(2,0)(R

p,q).

Let Z2 ⊕ Z2 act on Sp−1 × Sq−1 ⊂ Rp ×Rq ∼= Rp,q. Let

S(p, q) := (Sp−1 × Sq−1)/Z2

be the quotient by the diagonal action of Z2; note that

RP p−1 ×RP q−1 = (Sp−1 × Sq−1)/(Z2 ⊕ Z2).

Let (u, v) be an element in Sp−1 × Sq−1. Let 〈u, v〉 denote the associated point in

S(p, q). We can also embed S(p, q) ↪→ Gr+(1,1)(R
p,q) by 〈u, v〉 ↪→ Span{u, v}.

2.2.3 Theorem.

(1) We have Gr+2 (Rq) is a strong deformation retract of Gr+(0,2)(R
p,q).

(2) We have Gr2(Rq) is a strong deformation retract of Gr(0,2)(Rp,q).

(3) We have S(p, q) is a strong deformation retract of Gr+(1,1)(R
p,q).

(4) We have RP p−1 ×RP q−1 is a strong deformation retract of Gr(1,1)(Rp,q).

(5) We have Gr+2 (Rp) is a strong deformation retract of Gr+(2,0)(R
p,q).

(6) We have Gr2(Rp) is a strong deformation retract of Gr(2,0)(Rp,q).

Proof. Decompose Rp+q = Rp ⊕ Rq and z = x ⊕ y. Let Ψs(z) := sx ⊕ y define a

linear deformation retract from Rp+q to Rq. If g(z, z) > 0 and if s ∈ [0, 1], then

g(Ψs(z),Ψs(z)) = s2g((x, 0), (x, 0)) + g((0, y), (0, y))> 0.

Thus if π is a spacelike 2-plane, then Ψs(π) is a spacelike 2-plane for s ∈ [0, 1];

the map Ψs provides the required strong deformation retract from Gr+(0,2)(R
p,q) to
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Gr+2 (Rq); assertion (1) follows. Reversing the orientation defines a Z2 structure on

Gr+2 (Rp,q) so that

Gr2(Rp,q) = Gr+2 (Rp,q)/Z2.

Since the construction is equivariant with respect to this action, assertion (2) follows

from assertion (1). Assertions (5) and (6) follow similarly.

Let the vectors P± = (x±, y±) be as in Lemma 2.2.1 for π ∈ Gr+(1,1)(R
p,q). Let

Ψs(π) := Span{(x−, sy−), (sx+, y+)}.

The same argument as that given above shows that if s ∈ [0, 1], then

g((x−, sy−), (x−, sy−)) < 0 and g((sx+, y+), (sx+, y+)) > 0.

Thus g((x−, sy−), (x−, sy−))g((sx+, y+), (sx+, y+))− g((x−, sy−), (sx+, y+))2 < 0.

Consequently Ψs(π) is a 2-plane of type (1, 1). Our construction is Z2⊕Z2 equivari-

ant so the indeterminacy in the choice of P± plays no role and Ψs defines smooth

maps on Gr+(1,1)(R
p,q) and Gr(1,1)(Rp,q) providing the required strong deformation

retract to S(p, q) and RP p−1 ×RP q−1. �

2.2.4 Remark: Let F SO
(1,1)(R

p,q) be the set of pairs {(u, v) ∈ Rp,q ×Rp,q} so that

g(u, u) = −1, that g(v, v) = 1, and that g(u, v) = 0. If (u, v) ∈ F SO
(1,1)(R

p,q), let

π(u, v) := Span{u, v}. Then the map π : F SO
(1,1)(R

p,q) → Gr+(1,1)(R
p,q) is a fiber

bundle with structure group F = SO(1, 1) = R × Z2. Since F SO
(1,1)(R

p,q) has a

Z2 ⊕Z2 equivariant deformation retract to Sp−1 × Sq−1; this provides another way

to see that Gr+(1,1)(R
p,q) is homotopy equivalent to (Sp−1 × Sq−1)/Z2 = S(p, q).

§2.3 The Stiefel-Whitney Classes and K̃O(RPn)
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2.3.1 The Stiefel-Whitney classes. Let E be a real vector bundle over a topologi-

cal space B. Let w(E) be the total Stiefel-Whitney class of E; w(E) is characterized

by the following properties:

(1) We may decompose w(E) = 1 + w1(E) + w2(E) + ... for wi ∈ Hi(B;Z2).

(2) We have wi(E) = 0 for i > dim(E).

(3) We have w(E ⊕ F ) = w(E)w(F ) i.e. wk(E ⊕ F ) =
∑

i+j=k wi(E)wj(F ).

(4) If E is a trivial bundle, then w(E) = 1.

(5) If L is the classifying real line bundle over RPn, then u := w1(L) generates

H1(RPn;Z2) = Z2.

(6) We have w is natural with respect to pullback, i.e. w(f∗E) = f∗w(E).

If E is a real vector bundle over a topological space B, let [E] denote the

corresponding element in the reduced real K-theory group K̃O(B). The following

lemma calculating K̃O(RPn) follows from work of Adams [1].

2.3.2 Lemma. Let L be the classifying real line bundle over RPn, see equation

(2.4.1.a) below.

(1) Let u := w1(L). We then have H∗(RPn;Z2) = Z2[u]/(un+1 = 0).

(2) The elements [1] and [L] generate KO(RPn).

(3) The element [L]− [1] has order ρ(n) := 2φ(n) in K̃O(RPn) where φ(0) = 0,

φ(1) = 1, φ(2) = 2, φ(3) = 2, φ(4) = 3, φ(5) = 3, φ(6) = 3, φ(7) = 3, and

where φ(8k + `) = 4k + φ(`) for ` > 0.

For n ∈ N , let j(n) := [log2 n], then 2j(n) ≤ n < 2j(n)+1. We tabulate some

values of φ(n), j(n) and ρ(n).

TABLE 1. Some Useful Data
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n 2 3 4 5 6 7 8 9 10 11

n+ 2 4 5 6 7 8 9 10 11 12 13
n+ 3 5 6 7 8 9 10 11 12 13 14
φ(n) 2 2 3 3 3 3 4 5 6 6
j(n) 1 1 2 2 2 2 3 3 3 3
ρ(n) 4 4 8 8 8 8 16 32 64 64
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§2.4 H∗(Gr2(Rn);Z2) and the Steenrod Squares

2.4.1 Classifying bundles. We define

(2.4.1.a)

L :={(`, z) ∈ RPn ×Rn+1 : z ∈ `},

γ2 :={(π, z) ∈ Gr2(Rn)×Rn : z ∈ π} an

L :=Gr+2 (Rn)×R/(π, λ) ∼ (−π,−λ).

to be the classifying real line bundle over RPn, the classifying real 2-plane bundle

over Gr2(Rn) and the canonical real line bundle over Gr2(Rn). Let Vectr(B) denote

the isomorphism classes of rank r real vector bundles over B. The following lemma

is well known:

2.4.2 Lemma.

(1) We have π1RP
n = Z2 for n > 1 and Vect1(RPn) = Z2 is generated by L.

(2) We have π1Gr2(Rn) = Z2 for n > 2 and Vect1(Gr2(Rn)) = Z2 is generated by

L.

2.4.3 Remark: We note that the restriction of L to RPn−2 ⊂ Gr2(Rn) is the

classifying line bundle L over RPn−2 thus L is nontrivial.

We define the natural inclusion i : RPn−2 → Gr2(Rn) as follows. Let v ∈ Sn−2

and let 〈v〉 be the associated point in RPn−2 = Sn−2/Z2. Choose the standard

orthonormal basis {e1, . . . , en−1, en} for Rn so that Rn−1 = Span{e1, . . . , en−1}.

We define

i(〈v〉) := Span{v, en} ∈ Gr2(Rn).

We define
x := w1(γ2) ∈ H1(Gr2(Rn);Z2),

y := w2(γ2) ∈ H2(Gr2(Rn);Z2), an

u := w1(L) ∈ H1(RPn−2;Z2).
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Let γ⊥2 be the orthogonal complement of γ2 and let w⊥i := wi(γ⊥2 ). Since γ2⊕γ⊥2
is a trivial bundle of dimension n, we use w(γ2) = 1 + x+ y to express

w(γ⊥2 ) =
∑

k

w⊥k = (1 + x+ y)−1 ∈ Z2[[x, y]].

Since dim(γ⊥2 ) = n− 2, we see that w⊥i = 0 in H∗(Gr2(Rn);Z2) for i ≥ n− 1.

These relations generate all relations in H∗(Gr2(Rn);Z2); we refer to Borel [18] for

the proof of the following Theorem:

2.4.4 Theorem. We have

H∗(Gr2(Rn);Z2) ∼= Z2[x, y]/w⊥i = 0 for i ≥ n− 1.

We shall need the following technical lemma later in §3.3.

2.4.5 Lemma. Let i : RPn−2 → Gr2(Rn) be the natural inclusion. We have:

(1) i∗(γ2) ∼= L⊕ 1 and i∗(L) ∼= L.

(2) i∗x = u and i∗y = 0.

Proof. We use equation (2.4.1.a) and the definition of a pullback bundle to see that

i∗(γ2) ={(〈v〉, (π, z)) ∈ RPn−2 ×Gr2(Rn)×Rn : π = i(〈v〉) = Span{v, en}

and z ∈ π}.

So the fiber over each point 〈v〉 ∈ RPn−2 is precisely the 2-plane Span{v, en}.

On the other hand, since L = {(〈v〉, z) ∈ RPn−2 × Rn−1 : z ∈ 〈v〉} and since

1 = RPn−2 × R, the fiber of the bundle L⊕ 1 over each point 〈v〉 ∈ RPn−2 is the

2-plane Span{v} ⊕ R ∼= Span{v, en}. Thus i∗(γ2) ∼= L ⊕ 1. We use Remark 2.4.3

and Lemma 2.4.2 (2) to see that i∗(L) is a nontrivial line bundle over RPn−2, so it

has to be L. We use assertion (1) and naturality to see that

i∗x = w1(i∗(γ2)) = w1(L⊕ 1) = w1(L) = u, an

i∗y = w2(i∗(γ2)) = w2(L⊕ 1) = 0. �
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2.4.6 Steenrod Squares and the top Stiefel-Whitney class. In this section, we

use the total Steenrod square to establish a well known technical lemma (Lemma

2.5.8) about the top Stiefel-Whitney class of a real vector bundle, we refer to Glover,

Homer, and Stong [52]. We first recall the properties of the Steenrod squares Sqi

from Steenrod and Epstein [83].

2.4.7 Theorem. Let B be a topological space.

(1) For all integers i ≥ 0 and n ≥ 0, there exists a natural transformation of

functors which is a homomorphism Sqi : Hn(B;Z2) → Hn+i(B;Z2).

(2) Sq0 = 1.

(3) If dimx = n, then Sqnx = x2.

(4) If i > dimx, then Sqix = 0.

(5) (Cartan formula) Sqk(x · y) =
k∑

j=0

Sqjx · Sqk−jy.

(6) Sq1 is the Bockstein homomorphism β of the coefficient sequence

0 → Z2 → Z4 → Z2 → 0.

(7) (Adem relations) Let
(
m
n

)
denote the number m choose n. If 0 < a < 2b, then

SqaSqb =
[a/2]∑
j=0

{(
b− 1− j

a− 2j

)
mod 2

}
Sqa+b−jSqj .

§2.5 The Splitting Principle

A very useful tool in determining polynomial relations between characteristic

classes is the splitting principle. This section is devoted to the discussion of the

splitting principle and its various applications useful to our studies. We first intro-

duce the following notational conventions. We follow the setup given in Bott and

Tu [19].
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2.5.1 Notational conventions. Let K := R or C. Let V be a vector space over

K. Let P (V ) be the set of all 1 dimensional K subspaces of V . Let P := P (V )×V

be the product bundle. Let SP := {(`, v) ∈ P : v ∈ `} be the canonical subbundle.

Let QP be the canonical quotient bundle defined by the short exact sequence

0 → SP ↪→ P → QP → 0.

2.5.2 Projective bundles and flag manifolds. Let π : E → B be aK vector bundle

with transition functions gαβ : Uα ∩Uβ → GL(n,K). We define the projectivization

of E by the fiber bundle ρ : P (E) → B, whose fiber over each x ∈ B is P (Ex) and

whose transition functions ḡαβ : Uα ∩ Uβ → PGL(n,K) are induced by gαβ. So a

point in P (E) is a line `x in the fiber Ex. By definition, we have ρ∗E ⊂ P (E)× E

whose fiber over the point `x ∈ P (E) is Ex, i.e. (ρ∗E)`x
= Ex. The restriction of

ρ∗E to each fiber ρ−1x = P (E)x is the trivial bundle P (E)x × Ex. The subbundle

SE := {(`x, v) ∈ ρ∗E : v ∈ `x} is a line bundle; its fiber over each point `x ∈ P (E)

contains all the vectors in `x.

2.5.3 Example: Let π : L → B be a line bundle, we then have P (L) = B and

ρ∗L = S = L.

We now construct a space F (E) called the flag manifold together with a map

σ : F (E) → B called the splitting map so that σ∗E is a sum of line bundles. We

proceed inductively on dimE.

(1) If dimE = 1, then E is a line bundle. Our construction is completed by Example

2.5.3.

(2) If dimE = 2, we use the projectivization of E discussed in §2.5.2 to see that

ρ∗E = SE ⊕ QE over P (E). We set σ := ρ and F (E) := P (E) to complete the

construction.
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(3) In general, at every next step, we projectivize the previously obtained quotient

bundle QE to split off a new line bundle, so eventually all that remains is a sum of

line bundles. We now set σ to be the composition of all these ρ’s and set F (E) to

be the projectivization of the last quotient bundle.

The fact that the map σ∗ : H∗(B;Z2) → H∗(F (E);Z2) is a ring monomorphism

follows from the Theorem below. The detailed proof is omitted, we refer to [19] for

the argument.

2.5.4 Theorem (Leray-Hirsch) Let K be a principal ideal domain. Let π : E → B

be a fiber bundle with fiber F of finite type. If there are globally defined cohomology

classes {a1, ..., ar} on E whose restriction to each fiber freely generate the cohomol-

ogy of the fiber as a K-module, then H∗(E;K) is a free H∗(B;K)-module with basis

{a1, ..., ar}.

2.5.5 Theorem (The splitting principle) Let E be a real vector bundle over B.

There exists a splitting map σ : F (E) → B so that σ∗E is a sum of line bundles

and σ∗ : H∗(B;Z2) → H∗(F (E);Z2) is a ring monomorphism.

2.5.6 Remark: A more general version of the Leray-Hirsch Theorem can be

found in Husemoller [57].

The following three lemmas are needed in §3.1 and §3.3.

2.5.7 Lemma. Let L be defined in equation (2.4.1.a). Let U be a real 4-plane

bundle over Gr2(Rn) so that U ⊗ L is isomorphic to U . Then

x4 + x3 · w1(U) + x2 · (w1(U) + w2(U)) + x · (w1(U) + w3(U)) = 0.

Proof. We use Theorem 2.5.5 (the splitting principle) to see that σ∗(U) =
⊕4

i=1 Li

and that σ∗ : H∗(Gr2(Rn);Z2) → H∗(F (U);Z2) is a ring monomorphism. Let

s := σ∗(x). Let si := w1(Li). Let w̃i := σ∗(wi(U)) = wi(σ∗(U)). Since U ∼= U ⊗ L

and since the Stiefel-Whitney classes are natural, we have:

w(U) = w(U ⊗ L) and σ∗(w(U)) = w(σ∗(U)) =
∏4

i=1 (1 + si).
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Consequently we have that:

∏4
i=1 (1 + si) = σ∗(w(U)) = σ∗(w(U ⊗ L)) = w(σ∗(U ⊗ L)) =

∏4
i=1 (1 + si + s).

We expand this identity to see:

∏4
i=1(1 + si + s) =

∏4
i=1(1 + si) + s · (

∑
i si +

∑
i<j<k sisjsk)

+ s2 · (
∑

i si +
∑

i<j sisj) + s3 · (
∑

i si) + s4

=
∏4

i=1(1 + si) + s4 + s3 · w̃1 + s2 · (w̃1 + w̃2) + s · (w̃1 + w̃3).

Thus s4 + s3 · w̃1 + s2 · (w̃1 + w̃2) + s · (w̃1 + w̃3) = 0. Since σ∗ is injective, the

assertion now follows. �

2.5.8 Lemma. Let B be a topological space. Let E be a real vector bundle over

B of dimension m. Let wm(E) be the top Stiefel-Whitney class of E. Let w(E) be

the total Stiefel-Whitney class of E. We have Sq(wm(E)) = w(E) ·wm(E).

Proof. By Theorem 2.5.5, it suffices to verify the assertion for sums of line bundles.

Furthermore, by Theorem 2.4.7, Sq is a ring homomorphism, we may reduce to the

case of a single line bundle λ. We compute:

Sq(w1(λ)) =w1(λ) + Sq1(w1(λ)) = w1(λ) + (w1(λ))2

=(1 + w1(λ)) · w1(λ) = w(λ) · w1(λ). �

2.5.9 Lemma. Let L be the nontrivial line bundle over Gr2(Rn) and let γ2 be

the classifying 2-plane bundle over Gr2(Rn) defined in equation (2.4.1.a). We have

Sq(x) = (1 + x)x and Sq(y) = (1 + x+ y)y.

Proof. We apply Lemma 2.5.8 to L and γ2 respectively; the result now follows. �
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§2.6 Two Important Lemmas

We say a bilinear map Φ : Ra × Rb → Rc is nonsingular if Φ(x, y) = 0 implies

either x = 0 or y = 0 or x = y = 0.

2.6.1 Lemma. Assume that q ≥ 3. If there exists a nonsingular bilinear map

Φ : Rq ×Rq → Rq+1, then q = 3, 4, 7, or 8.

Proof. Let q ·L be q copies of the classifying line bundle and let (q + 1) · 1 be q + 1

copies of the trivial line bundle over RP q−1. In other words,

q · L ∼= Sq−1 ×Rq/(x, y) ∼ (−x,−y) an

(q + 1) · 1 ∼= Sq−1 ×Rq+1/(x, y) ∼ (−x, y).

We observe (−x,Φ(−x,−y)) = (−x,Φ(x, y)) so the following gluing relations are

preserved under Φ:
(x, y) Φ−→ (x,Φ(x, y))
o ◦ o

(−x,−y) Φ−→ (−x,Φ(x, y)).

Hence, Φ extends to a linear injective map from q · L to (q + 1) · 1. Consequently,

we have a short exact sequence

(2.6.1.a) 0 → q · L Φ−→(q + 1) · 1 → {(q + 1) · 1}/Φ{q · L} → 0.

The quotient in (2.6.1.a) is a 1 dimensional line bundle L̃ over RP q−1. Since any

short exact sequence of line bundles splits, we have a decomposition:

(2.6.1.b) (q + 1) · 1 = qL⊕ L̃,

where L̃ = {(q + 1) · 1}/Φ{q · L}. Since by Lemma 2.4.2 (1), there are exactly two

distinct line bundles over RP q−1, either L̃ = 1 or L̃ = L. We distinguish these two

cases in Equation (2.6.1.b).
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Case 1. If L̃ = 1, then we have q([L] − [1]) = 0 in K̃O(RP q−1). This implies that

ρ(q − 1) divides q. We use Table (1) to see that q = 4 or q = 8; once q ≥ 10, the

powers of 2 grow too rapidly to permit this divisibility to occur.

Case 2. If L̃ = L, then we have (q + 1)([L]− [1]) = 0 in K̃O(RP q−1). This implies

that ρ(q− 1) divides q+ 1. We use Table (1) to see that q = 3 or q = 7; again once

q ≥ 10, the powers of 2 grow too rapidly to permit this divisibility to occur. �

2.6.2 Lemma. Let X be a topological space.

(1) Let A : X → Mn(R) (the set of all n × n real matrices) be a continuous map.

Assume dim KerA = k is constant. Then x → KerA(x) is a continuous map

from X to Grk(Rn).

(2) Let πi : X → Gr2(Rn) be continuous maps. Assume dim(π1(x)∩π2(x)) = 1 for

all x. Then the map x→ π1(x) ∩ π2(x) is a continuous map from X to

Gr1(Rn) = RPn−1.

Proof. The first assertion is well known; we refer to Atiyah [2]. Let ρi(x) be orthog-

onal projection on πi(x). Let I be the n× n identity matrix. We define

A(x) := 2 · I − ρ1(x)− ρ2(x).

If λ ∈ π1(x)∩ π2(x), then A(x)λ = 2λ− λ− λ = 0. Conversely, suppose that λ 6= 0

satisfies the equation A(x)λ = 0. We then have 2λ = ρ1(x)λ+ ρ2(x)λ. Since ρi(x)

is an orthogonal projection, |ρi(x)λ| ≤ |λ|. Consequently, we have

2|λ| ≤ |ρ1(x)λ|+ |ρ2(x)λ| ≤ |λ|+ |λ| = 2|λ|.

This shows that |ρi(x)λ| = |λ|. Since ρi(x) is an orthogonal projection, this shows

ρi(x)λ = λ and thus λ ∈ πi(x). Thus KerA = π1(x)∩π2(x) and the second assertion

follows from the first. �
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CHAPTER III

BOUNDING THE RANK OF IP ALGEBRAIC

CURVATURE TENSORS

In chapter III, we prove Theorem A by bounding the rank of IP algebraic

curvature tensors. Here is a brief outline to chapter III. In §3.1, we list the main

results of this chapter and use these results to prove the first two assertions of

Theorem A. In §3.2, we prove Theorem 3.1.1. In §3.2-3.4, we prove Theorem 3.1.2.

In §3.5, we prove Theorem 3.1.3. We postpone the proof of Theorem A (3) until

§3.6 as the techniques of proof are quite different from the topological ones that

will be used to prove the results cited above. We also establish some additional low

dimensional results using similar techniques.

§3.1 Proof of Theorem A (1) and (2)

We shall use techniques from algebraic topology to prove the following results:

3.1.1 Theorem.

(1) Let R : Sn → so(n+2) be admissible. Assume n ≥ 9. We have that rankR ≤ 2.

(2) Let R : Sn → so(n+ 3) be admissible. Assume n ≥ 10.

(2a) If n is even, then rankR ≤ 2.

(2b) If n is odd, then rankR ≤ 4.

3.1.2 Theorem. Let R : Gr+2 (Rq) → so(q + 2) be an admissible map of rank 4.

Let q ≥ 12 and let q be even. Then either q is a power of 2 or 2 + q is a power of 2.

3.1.3 Theorem. Let R be an IP algebraic curvature tensor on Rp,q.
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(1) If p = 1 and if q = 5, then rankR ≤ 2.

(2) If p = 1 and if q = 9, then rankR ≤ 2.

We now use these results to prove Theorem A (1) and (2) as follows.

Proof of Theorem A (1). Let p = 1 and let q ≥ 9. Let R be an IP algebraic curvature

tensor on R1,q. Then R defines an admissible map from Gr+(R1,q) → so(1, q) of

rank r. We wish to show r ≤ 2. If q = 9, we use Theorem 3.1.3 (2) to see

r ≤ 2. We may therefore assume q ≥ 10. We use Lemma 2.1.4 to construct an

admissible map R̃ : Gr+(R1,q) → so(1 + q) of rank r. We use the Z2 equivariant

embedding Sq−1 → Gr(1,1)(Rp,q) discussed in chapter II to construct an admissible

map R̃ : Sq−1 → so(q + 1) of rank r. Theorem 3.1.1 (1) then implies r ≤ 2 as

desired since q ≥ 10 implies that q − 1 ≥ 9. �

Proof of Theorem A (2). Let p = 2 and let q ≥ 11. Let R be an IP algebraic

curvature tensor on R2,q. By Lemma 2.1.4, R defines an admissible map from

Gr+(R2,q) → so(2, q) of rank r. Again, we use Lemma 2.1.4 to construct an admis-

sible map R̃ : Gr+(R2,q) → so(2 + q) of rank r. Again, we use the Z2 equivariant

embedding Sq−1 → Gr+(R2,q) to construct an admissible map R̃ : Sq−1 → so(q+2)

of rank r. Since q − 1 ≥ 10, Theorem 3.1.1 (2) shows that r ≤ 4. Furthermore in

the exceptional case that r = 4, we may conclude that q − 1 is odd and hence q is

even. We now suppose r = 4 and q even. We use the Z2 equivariant embedding of

Gr+2 (Rq) in Gr+(0,2)(R
q) to construct an admissible map R̃ : Gr+2 (Rq) → so(2 + q)

of rank 4. We use Theorem 3.1.2 to see that q or q + 2 is a power of 2. �

3.1.4 Remark: We construct rank 2 and rank 4 admissible maps to show Theo-

rem 3.1.1 is sharp as follows. Let {ei} be the standard orthonormal basis for Rn+3
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relative to the standard Euclidean inner product g. Let {e1, ..., eν} be the stan-

dard orthonormal basis for Rν . If {v1, v2} is an orthonormal set, let Rv1,v2 be the

rotation which sends v1 to v2 and which is zero on the orthogonal complement, i.e.

Rv1,v2 : w → g(w, v1)v2 − g(w, v2)v1.

(1) Let R2(v) := Rv,en+3 . Then we have R2 : Sn+1 → so(n + 3) is an admissible

map with rank 2 and assertions (1) and (2a) are sharp.

(2) Let J be a complex structure on Rn+3 for n+ 3 even. Let

R4(v) := R2(v) +RJ v,en+2.

Then we have R4 : Sn → so(n + 3) is an admissible map with rank 4 and

assertion (2b) is sharp.

3.1.5 Remark: We do not know if Theorem 3.1.1 is sharp; we do not know if

there exist rank 4 admissible maps in this setting.

§3.2 Bounding the Rank of IP Algebraic Curvature Tensors

3.2.1 Notational conventions. Let R be an admissible map from Sn to so(m).

Let V0(R(v)) and V1(R(v)) be the kernel and range of R(v) for v ∈ Sn. Since R(v)

has constant rank on Sn, Vi(R(v)) define vector bundles over Sn. Let m · 1 be m

copies of the trivial line bundle over Sn. We then have an orthogonal direct sum

decomposition:

(3.2.1.a) V0 ⊕ V1 = m · 1.

Since R takes values in so(m), V0(R(v))∩V1(R(v)) = {0} for all v ∈ Sn. This would

not be the case if we were dealing with maps to so(p, q) for pq 6= 0 which is why
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Lemma 2.1.4 will be useful in our future development. Since R(−v) = −R(v), the

vector bundles Vi descend to define vector bundles Ui over projective space RPn.

Let v1 ∈ Sn, let v2 ∈ V1(R(v1)), and let λ ∈ R. Since R(−v1) = −R(v1), we have

R(−v1)v2 ⊗ λ = −R(v1)v2 ⊗ λ = R(v1)v2 ⊗ (−λ).

Thus the following gluing relations are preserved:

(v1, v2 ⊗ λ)
R(v1)−→ (v1, R(v1)v2 ⊗ λ)

o ◦ o
(−v1, v2 ⊗ λ)

R(−v1)−→ (−v1, R(v1)v2 ⊗ (−λ)).

We note that the left column of the diagram gives rise to the bundle U1 ⊗ 1 ∼= U1

over RPn, whereas the right column gives rise to the bundle U1⊗L over RPn. Thus

R descends to define an isomorphism between U1 and U1 ⊗ L. We decompose [Ui]

in K̃O(RPn) in the form:

[Ui] = ai([L]− [1]) + dim(Ui)[1];

in this expression, the integer ai is well defined modulo ρ(n). Let j(n) be defined in

§2.4, then 2j(n) ≤ n < 2j(n)+1. We shall need the following technical lemma. 3.2.2

Lemma. Let R : Sn → so(m) be admissible. Let U1 be the associated bundle defined

over RPn.

(1) We have 2a1 ≡ dim(U1) mod ρ(n).

(2) We have a0 + a1 ≡ 0 mod 2j(n)+1.

(3) If n ≥ 9, then j(n) + 2 ≤ φ(n) and a1 ≡ 1
2

dim(U1) mod 2j(n)+1.

Proof. By definition we have

[U1] =a1([L]− [1]) + dim(U1)[1] an

[U1 ⊗ L] =(dim(U1)− a1)([L]− [1]) + dim(U1)[1].

Since U1 is isomorphic to U1 ⊗ L, we may equate the coefficients of ([L] − [1])

mod ρ(n) in these expressions to prove assertion (1).



39

The orthogonal direct sum decomposition (3.2.1.a) descends to show U0⊕U1
∼= m·1.

Consequently

(3.2.2.a) 1 = w(U0)w(U1) = (1 + u)a0(1 + u)a1 = (1 + u)a0+a1 .

Let a0 + a1 ≡ α + β · 2j(n) mod 2j(n)+1 for 0 ≤ α < 2j(n) and β = 0, or 1. Since

2j(n) ≤ n, all the coefficients of u` in equation (3.2.2.a) vanish for ` ≤ 2j(n), so

α = β = 0; assertion (2) follows. We use Table (1) to see that j(n) + 2 ≤ φ(n)

for 9 ≤ n ≤ 11. The function φ is growing roughly linearly and the function j is

growing logarithmically; hence assertion (3) follows. �

3.2.3 Proof of Theorem 3.1.1. The first assertion of Theorem 3.1.1 follows from

work of Gilkey, Leahy and Sadofsky [48]. We adopt the argument given by Gilkey,

Leahy and Sadofsky to prove the remaining assertions.

We set m := n+ 3. Let j := j(n). Let ui := dim(Ui). Assume u1 ≥ 2. We use

Lemma 3.2.2 to choose integers 0 < ā0 ≤ 2j+1, and ā1 = 2j+1− ā0 so 0 ≤ ā1 < 2j+1

such that w(Ui) = (1 + u)āi . We have the basic properties:

(1) ā0 + ā1 = 2j+1.

(2) u0 + u1 = n+ 3.

(3) u1 = 2ā1.

Now if ā0 ≤ n, then xā0 survives in w(U0) and hence u0 ≥ ā0. Consequently

2j+1 + 2 ≥ n+ 3 = u0 + u1 ≥ ā0 + 2ā1 = 2j+1 + ā1.

Thus ā1 ≤ 2 and u1 = 2ā1 ≤ 4. If u1 = 4, i.e. ā1 = 2, then all the inequalities must

have been equalities, thus 2j+1 + 2 = n+ 3 and n is odd. We may therefore assume

ā0 > n ≥ 2j . Let αν , α̃ν , and βν be the coefficients of 2ν in the 2-adic expansions
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of ā0, ā1− 1 and n. Then αν , α̃ν , and βν are 0 or 1. Since ā0 + ā1 = 2j+1, we must

have α̃ν + αν = 1. Thus

ā0 = 1 · 2j + αj−12j−1 + ....+ α0

ā1 = 0 · 2j + α̃j−12j−1 + ...+ α̃0 + 1

n = 1 · 2j + βj−12j−1 + ...+ β0.

If all the αν = 1, then ā1 = 1 so u1 = 2 and we are done. Thus αν = 0 for some

0 ≤ ν ≤ j − 1. Choose k maximal so that αk = 0. Expand

ā0 = 1 · 2j + ...+ 1 · 2k+1 + 0 · 2k + αk−12k−1 + ....+ α0

ā1 = 0 · 2j + ...+ 0 · 2k+1 + 1 · 2k + α̃k−12k−1 + ...+ α̃0 + 1

n = 1 · 2j + ...+ βk+12k+1 + βk2k + βk−12k−1 + ...+ β0.

Let

nk+1 := 2j + βj−12j−1 + ...+ βk+12k+1 ≤ n.

We use Lemma A.1 in Appendix A to see that xnk+1 survives in w(U0), this implies

u0 ≥ nk+1. We estimate:

u0 ≥ nk+1

u1 = 2ā1 ≥ 2 · 2k + 2 = 2k + 2k−1 + ...+ 20 + 3

n+ 3 = u0 + u1 ≥ nk+1 + 2k + 2k−1 + ...+ 20 + 3 ≥ n+ 3.

Thus all of these inequalities must have been equalities; we now have:

(3.2.3.a) u0 = nk+1, ā1 = 2k + 1, and n = nk+1 + 2k + 2k−1 + ...+ 20.

If k = 0, then ā2 = 2 so u1 = 4. Furthermore n is odd. Thus we assume k ≥ 1 and

express:

ā0 = 1 · 2j + ...+ 1 · 2k+1 + 0 · 2k + 1 · 2k−1 + ...+ 1 · 20

ā1 = 0 · 2j + ...+ 0 · 2k+1 + 1 · 2k + 0 · 2k−1 + ...+ 0 · 20 + 1

n = 1 · 2j + ...+ βk+12k+1 + 1 · 2k + 1 · 2k−1 + ...+ 1 · 20.
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This shows that nk+1 + 1 ≤ n so xnk+1+1 survives in w(U0) and hence we have

u0 ≥ nk+1 + 1 > nk+1; this contradicts equation (3.2.3.a). Thus k = 0, and this

completes the proof. �

The following is an immediate consequence of the proof we have given of The-

orem 3.1.1 since ā1 = 1
2u1 = 2.

3.2.4 Corollary. Assume n ≥ 10. Let R : Sn → so(n + 3) be admissible. If

dim(U1) = 4, then we have w(U1) = 1 + u2.

Let R : Gr+2 (Rm−2) → so(m) be a rank 4 admissible map. Let W̃0(R(π)) and

W̃1(R(π)) be the kernel and range of R(π) for π ∈ Gr+2 (Rm−2). Since R(π) has

constant rank on Gr+2 (Rm−2), W̃i(R(π)) define vector bundles over the oriented

Grassmannian Gr+2 (Rm−2); we have that dim W̃0 = m − 4, that dim W̃1 = 4,

and that W̃0 ⊕ W̃1 is a trivial bundle of dimension m. Since R(−π) = −R(π),

W̃i(R(−π)) = W̃i(R(π)). Thus these bundles descend to define vector bundles Wi

over the unoriented Grassmannian Gr2(Rm−2) and W0 ⊕W1 = m · 1. Let L be the

nontrivial real line bundle over Gr2(Rm−2) defined in equation (2.4.1.a). We have

that R induces an isomorphism from W1 ⊗ L to W1. We use Theorem 2.4.4 and

Lemma 2.4.5 to study the Stiefel-Whitney classes of the bundle W1.

3.2.5 Lemma. Assume m ≥ 11. Let R : Gr+2 (Rm−2) → so(m) be a rank 4

admissible map. There exist integers S, T , and U taking values in {0, 1} so that

w(W1) = 1 + x2 + S(y + xy) + Tx2y + Uy2.

Proof. Let i : RPm−4 → Gr2(Rm−2) be the natural inclusion discussed in §2.5.

Let Ui be the restriction of Wi to RPm−4. We use Corollary 3.2.4 to see that

i∗(w(W1)) = w(U1) = 1+u2. Lemma 2.4.5 shows that the coefficients of x, x3, and

x4 in w(W1) are zero while the coefficient of x2 is 1, so w1(W1) = 0. By Theorem
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2.4.4, x and y generate H∗(Gr2(Rm−2);Z2). Consequently, there exist constants S,

Q, T , and U so that

w(W1) = 1 + P (x, y) for P (x, y) := x2 + Sy +Qxy + Tx2y + Uy2.

We use Lemma 2.5.7 with U = W1 to see that x4 + x2 · w2(W1) + x · w3(W1) = 0,

i.e. we have that x4 + x(Qxy) + x2(x2 + Sy) = 0 so S = Q. �

§3.3 A Technical Lemma

3.3.1 Lemma. Assume m ≥ 11. Let R : Gr+2 (Rm−2) → so(m) be a rank 4

admissible map. We have w(W1) = 1 + Pi for i = 2, 3, or 4; where P2 = x2,

P3 = x2 + y2, and P4 = x2 + y + xy.

Proof. In Lemma 3.2.5, we showed w(W1) = 1+x2 +S(y+xy)+Tx2y+Uy2. The

top Stiefel-Whitney class of W1 is w4(W1) = Tx2y+Uy2. We consider the following

cases:

Case 1. Suppose (T, U) 6= (0, 0). Since Sq is a ring homomorphism, we apply

Lemma 2.5.9 to see that

(3.3.1.a)

Sq(w4(W1)) =T (1 + x)2x2(1 + x+ y)y + U(1 + x+ y)2y2

=Tx2y + Tx4y + Tx3y + Tx5y + Tx2y2

+ Tx4y2 + Uy2 + Ux2y2 + Uy4.

We apply Lemma 2.5.8 to see that:

(3.3.1.b)

Sq(w4(W1)) =(1 + x2 + S(y + xy) + Tx2y + Uy2)(Tx2y + Uy2)

=Tx2y + Tx4y + TSx2y2 + TSx3y2 + USxy3

+ USy3 + Uy2 + Ux2y2 + Uy4 + Tx4y2.

Since m ≥ 11, there are no relations in Hk(Gr2(Rm−2);Z2) for k ≤ 7. We compare

the coefficients of x3y in equations (3.3.1.a) and (3.3.1.b) to see T = 0. Since

(T, U) 6= (0, 0), we have U = 1. We compare the coefficients of xy3 in equations

(3.3.1.a) and (3.3.1.b) to see S = 0.
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Case 2. Suppose (T, U) = (0, 0). Then S = 0 or S = 1 is automatic in Z2. Our

assertion now follows. �

3.3.2 Additional notation. Let Vi := (1 + Pi)−1 be the corresponding formal

power series in the formal power series ring Z2[[x, y]] defined by Pi which were listed

in Lemma 3.3.1. Let Vi
k be the kth degree homogeneous terms in the corresponding

expansions. For clarity, we now tabulate these expressions as follows:

TABLE 2. Possible Choises for V

w(γ⊥2 ) = (1 + x+ y)−1 V2 = (1 + x2)−1

V3 = (1 + x2 + y2)−1 V4 = (1 + x2 + y + xy)−1

§3.4 Rank 4 Admissible Maps in the (2, m− 2) Setting

In this section, we work in the setting (p, q) = (2, m−2) with p = 2 and q ≥ 10.

We have the natural embedding Sq−1 in Gr+(1,1)(R
2,q). If R : Gr+2 (R2,q) → so(2+q)

is an admissible map, then the restriction of R to Sq−1 defines an admissible map

from Sq−1 to so(2 + q). By Theorem 3.1.1 (2), we have rankR ≤ 4 and rankR = 4

only if q is even, so m is also even. Suppose there exists a rank 4 admissible map R

from Gr+2 (R2,q) to so(2+q). We use the Z2 equivariant embedding of Gr+2 (Rq) into

Gr+2 (R2,q) discussed in §2.2 to extend R to a rank 4 admissible map from Gr+2 (Rq)

to so(2 + q).

We adopt the notational conventions established in §2.4.1 and §3.3.2. Since

dimW0 = q−2, Vi
k = 0 in H∗(Gr2(Rq);Z2) for k ≥ q−1 and i = 2, 3 or 4. We now

study the relationship between q and Vi.

3.4.1 Lemma. Assume p = 2 and q ≥ 10 even. Let R : Gr+2 (Rq) → so(q + 2) be

a rank 4 admissible map. If w(W0) = V2, then q is a power of 2.
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Proof. Since R has rank 4, dimW1 = 4 and dimW0 = q − 2. Thus V2
q vanishes in

Hq(Gr2(Rq);Z2); we may express V2
q = αw⊥q + βx ·w⊥q−1 in Z2[x, y] for α, β = 0 or

1. We have V2 =
∑

i≥0 x
2i. Since q is even, V2

q = xq. We consider the following

cases:

Case 1. Suppose (α, β) = (0, 0). This implies V2
q = 0 which is false.

Case 2. Suppose (α, β) = (1, 0). This implies V2
q = w⊥q . Since there is no yq/2 term

in V2
q , and since w⊥q contains the term yq/2, this is not possible.

Case 3. Suppose (α, β) = (1, 1). This implies V2
q = w⊥q + x ·w⊥q−1. Since there is no

xq term in w⊥q + x ·w⊥q−1, and since V2
q contains the term xq, this is not possible.

Case 4. Suppose (α, β) = (0, 1). This implies V2
q = x · w⊥q . Since V2

q has only even

powers of x, this can happen only if w⊥q−1 = xq−1. We use Lemma A.2 in Appendix

A to see that w⊥q−1 = xq−1 in H∗(Gr2(Rq);Z2) if and only if q is a power of 2. �

3.4.2 Lemma. Assume p = 2 and q ≥ 10 even. Let R : Gr+2 (Rq) → so(q + 2) be

a rank 4 admissible map. Then w(W0) 6= V3.

Proof. If Qk is a homogeneous polynomial in x, y of degree k, then we can expand

Qk =C1(Qk)xk + C2(Qk)xk−2y + C3(Qk)xk−4y2

+ C4(Qk)xk−6y3 + C5(Qk)xk−8y4 + ...

We set Ci(Qk) := 0 if i < 0 or k < 0. Let

~C(Qk) := (C1(Qk)C2(Qk)C3(Qk)C4(Qk)C5(Qk)) ∈ Z5
2

be the first five coefficients in this expansion. In the expansion of w⊥k , we have

xk−2νyν = x · xk−2ν−1yν + y · xk−2νyν−1 where the term xk−2ν−1yν comes from

w⊥k−1 and the term xk−2νyν−1 comes from w⊥k−2. In the expansion of V3
k , we have

xk−2νyν = x2 · xk−2ν−2yν + y2 · xk−2νyν−2 where the term xk−2ν−2yν comes from
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V3
k−2 and the term xk−2νyν−2 comes from V3

k−4. Thus we have the following recur-

sion relations:

(3.4.2.a)
Ci(w⊥k ) = Ci(w⊥k−1) + Ci−1(w⊥k−2) and

Ci(V3
k) = Ci(V3

k−2) + Ci−2(V3
k−4).

We tabulate ~C(w⊥k ) and ~C(V3
k) for the following values of k

TABLE 3. The Periodicities of ~C(w⊥k ) and ~C(V3
k)

k ~C(w⊥k ) ~C(V3
k) k + 16 ~C(w⊥k+16) ~C(V3

k+16)

9 10101 00000 25 10101 00000
10 11011 10001 26 11011 10001
11 10001 00000 27 10001 00000
12 11100 10100 28 11100 10100
13 10100 00000 29 10100 00000
14 11010 10000 30 11010 10000
15 10000 00000 31 10000 00000
16 11101 10101 32 11101 10101
17 10101 00000 33 10101 00000
18 11011 10001 34 11011 10001
19 10001 00000 35 10001 00000
20 11100 10100 36 11100 10100
21 10100 00000 37 10100 00000
22 11010 10000 38 11010 10000
23 10000 00000 39 10000 00000
24 11101 10101 40 11101 10101
25 10101 00000 41 10101 00000

The recursion relations given in equation (3.4.2.a) imply ~C(w⊥k ) and ~C(V3
k) are

periodic with period 16 for all values of k ≥ 9.

Since R has rank 4, dimW1 = 4 and dimW0 = q − 2. Thus V3
q vanishes in

Hq(Gr2(Rq);Z2); we may express V3
q = αw⊥q + βx ·w⊥q−1 for α, β = 0 or 1. We use

Table (3) to tabulate these values:
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TABLE 4. The Elimination of V3

q 0 w⊥q x · w⊥q−1 w⊥q + x · w⊥q−1 V3
q

10 00000 11011 10101 01110 10001
12 00000 11100 10001 01101 10100
14 00000 11010 10100 01110 10000
16 00000 11101 10000 01101 10101
18 00000 11011 10101 01110 10001
20 00000 11100 10001 01101 10100
22 00000 11010 10100 01110 10000
24 00000 11101 10000 01101 10101
26 00000 11011 10101 01110 10001
28 00000 11100 10001 01101 10100
30 00000 11010 10100 01110 10000
32 00000 11101 10000 01101 00101

By comparing the data from each column, we can rule out w(W0) = V3 as

required. �

Lemma A.3 in Appendix A due to Stong [84] is needed for the case w(W0) = V4.

3.4.3 Lemma. Assume p = 2 and q ≥ 10. Let R : Gr+2 (Rq) → so(q + 2) be a

rank 4 admissible map. If w(W0) = V4, then 2 + q is a power of 2.

Proof. We note that w(W1) = 1 + x2 + y + xy = (1 + x)(1 + x + y). We apply

Theorem 2.5.5 to γ2 to see that

(1) σ∗(γ2) = L1 ⊕ L2.

(2) σ∗ : H∗(Gr2(Rq);Z2) → H∗(F (γ2);Z2) is a ring monomorphism.

(3) σ∗(x) = u1 + u2, where ui = w1(Li) for i = 1, 2.

(4) σ∗(y) = u1 · u2, where ui = w1(Li) for i = 1, 2.

Consequently, we have:

σ∗(w(γ2)) =(1 + u1) · (1 + u2), and

σ∗(w(W1)) =σ∗((1 + x)(1 + x+ y)) = (1 + u1) · (1 + u2) · (1 + u1 + u2).
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We now compute:

(σ∗w(γ⊥))n =
∑

i+j=n u
i
1 · u

j
2, and

(σ∗V4)n =
∑

a+b+c=n(u1 + u2)a · ub
1 · uc

2.

Since V4
q−1 = 0 in Hq−1(Gr2(Rq);Z2), we have

0 = (σ∗V)4q−1 =
∑

a+b+c=q−1(u1 + u2)a · ub
1 · uc

2 ∈ Z2[u1, u2].

Lemma A.3 in Appendix A now shows (q − 1) + 3 = 2 + q is a power of 2 as

required. �

3.4.4 Proof of Theorem 3.1.2. Theorem 3.1.2 now follows from Lemmas 3.3.1,

3.4.1, 3.4.2, and 3.4.3. �

§3.5 Some Low Dimensional Results

We now investigate some lower dimensional cases in the Lorentzian setting.

3.5.1 Proof of Theorem 3.1.3. Let R be an IP algebraic curvature tensor. First we

assume (p, q) = (1, 5). Then R defines an admissible map from Gr2(R1,5) to so(1, 5).

We use Lemma 2.1.4 to construct an admissible map R̃ : Gr2(R1,5) → so(6) of the

same rank. Since Gr2(R1,5) = Gr(0,2)(R1,5)
.
t Gr(1,1)(R1,5) and since Gr(0,2)(R1,5)

strongly deformation retracts to Gr2(R5), we have the following commutative dia-

gram:
Gr2(R5) R−→ so(6)
↑ i ◦ ↑
RP 3 =−→ RP 3

We adopt the notational conventions established in §2.4.1. We have W1⊕W0 = 6 ·1

and W1 ⊗ L ∼= W1. We must rule out the possibilities of having dimW1 = 6 or of

having dimW1 = 4.
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Case 1. Suppose dimW1 = 6 and dimW0 = 0. Then we have 6 · ([L] − 1) = 0 in

K̃O(RP 3). This implies 6 divides 2φ(3) = 4, which is false.

Case 2. Suppose dimW1 = 4 and dimW0 = 2. We apply Corollary 3.2.4 to see

that w1(W1) = 0. Since dimW0 = 2, w(W0) = 1 + bx2 + cy. We use the relation

w(W1) = w(W0)−1 to see that

w1(W1) = 0, w2(W1) = bx2 + cy, w3(W1) = 0, and w4(W1) = bx4 + cy2.

We apply Lemma 2.5.7 to see that

x4 + x2(bx2 + cy) = (1 + b)x4 + cx2y = 0.

We apply Theorem 2.4.4 to see that 0 = w⊥4 = x4 + x2y + y2, so we must have

(1 + b)x4 + cx2y = ε(x4 + x2y + y2) for ε = 0 or 1. Thus ε = 0, b = 1, and c = 0.

Consequently, we have:

(3.5.1.a) w(W0) = 1 + x2 and w(W1) = 1 + x2 + x4.

Since w(W0)·w(W1) = 1, equation (3.5.1.a) implies x6 belongs to the ideal generated

by the elements {w⊥4 = x4 + x2y + y2, w⊥5 = x5 + xy2, w⊥6 = x6 + x4y + y3}. So we

must be able to express x6 as a nontrivial linear combination of w⊥4 , w⊥5 and w⊥6 ,

but this is not possible and hence proves assertion (1).

Next we assume (p, q) = (1, 9). Then R defines an admissible map from

Gr2(R1,9) to so(1, 9). We use Lemma 2.1.4 to construct an admissible map R̃

from Gr2(R1,9) to so(10) of the same rank. Since i : RP 8 → Gr(1,1)(R1,9) and

since Gr2(R1,9) = Gr(0,2)(R1,9)
.
t Gr(1,1)(R1,9), we have the following commutative

diagram:
Gr(1,1)(R1,9) R−→ so(10)

↑ i ◦ ↑
RP 8 =−→ RP 8
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As before, we let Wi be the associated vector bundles over Gr2(R1,9) and hence

restrict to define vector bundles Ui over RP 8. Furthermore, we have U1⊕U0 = 10 ·1

and U1 ⊗L ∼= U1. We must rule out the possibilities of having dimU1 = 10, having

dimU1 = 8, having dimU1 = 6, and having dimU1 = 4. We use Lemma 3.2.2 to

see that 2a1 ≡ dimU1 mod ρ(8) = 16, so a1 ≡ 1
2

dimU1 mod 8.

Case 1. Suppose dimU1 = 10 and dimU0 = 0. Then we have 10 · ([L] − 1) = 0 in

K̃O(RP 8). This implies 10 divides 2φ(8) = 16, which is false.

Case 2. Suppose dimU1 = 8 and dimU0 = 2. Either a1 = 4 and a0 = 12, or a1 = 12

and a0 = 4.

(2.1) If a1 = 4 and a0 = 12, then w(U0) = (1 + u)12 = (1 + u4)3 = 1 + u4 + u8 in

H∗(RP 8;Z2). But this contains u4, which is false.

(2.2) If a1 = 12 and a0 = 4, then w(U0) = (1 + u)4 = 1 + u4 in H∗(RP 8;Z2). But

this contains u4, which is false.

Case 3. Suppose dimU1 = 6 and dimU0 = 4. Either a1 = 3 and a0 = 13, or a1 = 11

and a0 = 5.

(3.1) If a1 = 3 and a0 = 13, then w(U0) = (1 + u)13 in H∗(RP 8;Z2). But this

contains u5, which is false.

(3.2) If a1 = 11 and a0 = 5, then w(U0) = (1+u)5 = 1+u+u4+u5 in H∗(RP 8;Z2).

But this contains u5, which is false.

Case 4. Suppose dimU1 = 4 and dimU0 = 6. Either a1 = 2 and a0 = 14, or a1 = 10

and a0 = 6.

(4.1) If a1 = 2 and a0 = 14, then w(U0) = (1 + u)14 = (1 + u2)7 in H∗(RP 8;Z2).

But this contains u8, which is false.

(4.2) If a1 = 10 and a0 = 6, then w(U1) = (1 + u)10 = (1 + u2)5 in H∗(RP 8;Z2).

But this contains u8, which is false. Our assertion now follows. �
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§3.6 Rank 4 IP Algebraic Curvature Tensors in the (2,2) Setting

In Theorem 1.3.2, Ivanov-Petrova exhibited a family of “exotic” rank 4 IP alge-

braic curvature tensor in the 4 dimensional Riemannian setting. By Theorem 1.3.3,

this algebraic curvature tensor is not geometrically realizable by an IP metric. In

this section, we give similar constructions of some rank 4 IP algebraic curvature

tensor in the signature (2, 2) case.

3.6.1 Proof of Theorem A (3). Let R ∈ ⊗4(R4) be the “exotic” rank 4 tensor

given in Theorem 1.3.2. We have that R satisfies the curvature identities relative to

the standard real-valued positive definite metric g on R4. We complexify and extend

the tensors R and g to the tensors Rc and gc which are complex and multilinear.

Let {ei} be the usual R basis for R4 and let

f1 :=
√
−1e1, f2 :=

√
−1e2, f3 := e3, f4 := e4

be a R basis for

H := spanR{f1, f2, f3, f4} ⊂ C4.

Let R̂ and ĝ be the restrictions of Rc and gc to H. We note that ĝ is a real metric

of signature (−,−,+,+) and that R̂ is a real 4 tensor. We use Theorem 2.1.1 to see

that R̂2(π) has constant eigenvalues on Gr2(R2,2) and hence R̂ is IP. This constructs

an IP algebraic curvature tensor of rank 4 for a metric of type (2, 2). We compute

the nonvanishing components of R̂ to be:

R̂1212 = 2, R̂1313 = −2, R̂1414 = 1, R̂2323 = 1, R̂2424 = −2,

R̂3434 = 2, R̂1234 = 1, R̂1324 = −1, R̂1423 = −2.

Consequently, R̂ is a rank 4 IP algebraic curvature tensor of signature (2, 2). �

3.6.2 Remark: We can now give a more explicit construction of this tensor. Let

{ξ1, ξ2, ξ3, ξ4} be the standard orthonormal basis for R4 relative to the metric g
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of signature (2, 2), i.e. g(ξ1, ξ1) = g(ξ2, ξ2) = −1, g(ξ3, ξ3) = g(ξ4, ξ4) = +1, and

g(ξi, ξj) = 0 for i 6= j. Let J : R2,2 → R2,2 be the map

J ξ1 = ξ4,J ξ2 = −ξ3,J ξ3 = −ξ2, and J ξ4 = ξ1.

Then J 2 = 1, so J is a unitary paracomplex structure on R2,2. We define the

algebraic curvature tensors R0 and RJ of ⊗4(R2,2) by

R0(x, y)z := g(y, z)x− g(x, z)y, and

RJ (x, y)z := g(y,J z)J x− g(x,J z)J y − 2g(x,J y)J z.

Let a1, a2 be nonzero constants so a2+2a1 = 0. Then the algebraic curvature tensor

R̂ := −a2R0 − a1RJ is the rank 4 IP algebraic curvature tensor of signature (2, 2)

given in Theorem 3.6.1.
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CHAPTER IV

LORENTZIAN IP ALGEBRAIC CURVATURE TENSORS

In chapter IV, we prove Theorems B and C. We let R be a nontrivial Lorentzian

IP algebraic curvature tensor. By Theorem A, R has rank 2 if q ≥ 9. Here is a brief

outline to chapter IV. In §4.1, we establish the trichotomy of rank 2 Lorentzian IP

algebraic curvature tensors; this proves Theorem B. Lemma 4.1.2 is the primary

technical tool we will use in the proof of Theorem B; the proof is a fairly straight-

forward computation. In §4.2, we assume R is mixed or null and use Lemma 2.6.1

to show that q = 3, q = 4, q = 7, or q = 8. Thus once again algebraic topology plays

a crucial role in our analysis. This completes the proof of assertion (1) of Theorem

C. In §4.3, we complete the proof of assertion (2) of Theorem C by ruling out the

exceptional cases q = 3 and q = 7 (i.e. m = 4 or m = 8) if R is null. In the proof of

Lemma 2.6.1, we constructed a line bundle L̃; if L̃ was trivial, then q = 4 or q = 8

while if L̃ was nontrivial, then q = 3 or q = 7. Thus to show q = 4 or q = 8, it

suffices to prove that the line bundle L̃ constructed in the proof of Lemma 2.6.1 is

the trivial line bundle. This is done by constructing a “universal axis”.

§4.1 The Trichotomy of Lorentzian IP Algebraic Curvature Tensors

We now begin our preparations for the proof of Theorem B. We first establish

some notational conventions.

4.1.1 Notational conventions. Let T ∈ so(1, q), then (KerT )⊥ = Range T . We

set:
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W1(T ) := (Ker T )⊥ = Range T .

so2(n) := {T ∈ so(n) : rank(T ) = 2}.

so2(1, q) := {T ∈ so(1, q) : rank(T ) = 2}.

so
E
2 (1, q) := {T ∈ so2(1, q) : Spec(T ) 6= {0}}.

so
N
2 (1, q) := {T ∈ so2(1, q) : Spec(T ) = {0}}.

It is clear that so2(1, q) = so
E
2 (1, q)

.
t so

N
2 (1, q).

4.1.2 Lemma. Let T ∈ so2(1, q) and let ξ be a unit timelike vector in R1,q. Then

(1) There exists an orthonormal basis {ei} for R1,q so that ξ = e1 and there exists

real numbers λ1 and t1 with λ2
1 + t21 6= 0, so that T has the form

T =




0 t1 0 0 . . . 0
t1 0 λ1 0 . . . 0
0 −λ1 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0



.

Furthermore, the characteristic polynomial of T is given by

det(λ− T ) = λq−1[λ2 + λ2
1 − t21].

(2) If t21 = λ2
1, then we have:

(2a) T ∈ so
N
2 (1, q).

(2b) T 2 6= 0 but T 3 = 0.

(2c) RangeT = W1(T ) = Span{Tξ, T 2ξ}.

(2d) Tξ is spacelike, T 2ξ is null, and W1(T ) is a degenerate 2-plane.

(3) Let T =
(

0 ~t
(~t)t C

)
∈ so

N
2 (1, q). We have C ∈ so2(q) and the eigenvalues of

C are {0,±
√
−1|~t|}.

(4) If t21 6= λ2
1, then we have:
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(4a) T ∈ so
E
2 (1, q).

(4b) RangeT = W1(T ) is a nondegenerate 2-plane.

(4c) If λ2
1 > t21, then W1(T ) is spacelike.

(4d) If λ2
1 < t21, then W1(T ) is of type (1, 1).

(4e) T |Range T is invertible.

Proof. Let ξ be a unit timelike vector in R1,q and let T ∈ so2(1, q). We choose an

orthonormal basis for R1,q so that ξ = (1, 0, ..., 0). Relative to this basis, T has the

form

T =
(

0 ~x
(~x)t S

)
.

In this expression, ~x ∈ Rq, (~x)t represents the transposed column vector, and S is

a q × q skew-symmetric matrix. We further normalize the choice of basis for R1,q

so that S has the form

S =




(
0 λ1

−λ1 0

)
. . . (

0 λk

−λk 0

)
0

. . .
0



.

Since rankT = 2, at most one of the blocks of
(

0 λi

−λi 0

)
can be nontrivial. Thus,

we may assume T has the form

T =




0 t1 t2 t3 . . . tq
t1 0 λ1 0 . . . 0
t2 −λ1 0 0 . . . 0
t3 0 0 0 . . . 0
...

...
...

...
. . .

...
tq 0 0 0 . . . 0



.

Let ~x := (t1, ..., tq). Since T 6= 0, we have |~x|2 + λ2
1 6= 0.
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Suppose that λ1 = 0. We then have

T =
(

0 ~x
(~x)t 0

)
and T 2 =

(
|~x|2 0
0 (titj)

)
.

Since |~x|2 + λ2
1 6= 0, ~x 6= ~0, so |~x|2 is an eigenvalue of T 2. Thus, T is not nilpotent.

Moreover, since ~x 6= ~0, we may further normalize the basis chosen for Rq so that

~x = (t1, 0, ..., 0). Relative to this basis, T has the desired form given in (1).

Suppose that λ1 6= 0. If ti 6= 0, for i ≥ 3, then rankT ≥ 3, which is false. Let

~x = (t1, t2, 0, ..., 0). We then have:

(4.1.2.a) T =




0 t1 t2 0 . . . 0
t1 0 λ1 0 . . . 0
t2 −λ1 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0



.

We further normalize the basis chosen for Rq so that ~x = (t1, 0, ..., 0) and put T in

the form given in (1).

We complete the proof of (1) by calculating the characteristic polynomial of T

(4.1.2.b)

det(λ− T ) = λq−2 det


 λ −t1 0
−t1 λ −λ1

0 λ1 λ




= λq−2

[
λ det

(
λ −λ1

λ1 λ

)
+ t1 det

(
−t1 −λ1

0 λ

)]
= λq−1[λ2 + λ2

1 − t21].

We now prove assertion (2). Suppose that λ2
1 = t21. We use equation (4.1.2.b) to see

that T ∈ so
N
2 (1, q). This proves assertion (2a). We use assertion (1) and the fact

that t1 6= 0 to see that

Range T = W1(T ) = Span
{




0
t1
0
0
...
0



, t1




t1
0
−λ1

0
...
0




}
= Span{Tξ, T 2ξ}.
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This proves assertion (2c). Since T 3ξ = 0, g(T 2ξ, T 2ξ) = −g(Tξ, T 3ξ) = 0. Also,

g(Tξ, Tξ) = t21 > 0; assertions (2b) and (2d) now follow.

We now prove assertion (3). By assertion (1), we can normalize the form of T

by choosing a suitable orthonormal basis for Rq. This means we can find h ∈ O(q)

so that

(
1 0
0 h

)
T

(
1 0
0 h−1

)
=




0 |~t| 0 0 . . . 0
|~t| 0 λ1 0 . . . 0
0 −λ1 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0



.

Since T ∈ so
N
2 (1, q), by assertion (2) we have λ2

1 = |~t|2. Thus

hCh−1 =




0 λ1 0 . . . 0
−λ1 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0


.

Thus Spec(hCh−1) = {0,±
√
−1|~t|}; the same holds for C as required.

We now complete the proof of the lemma. Suppose that λ2
1 6= t21. We use

equation (4.1.2.b) to see that T ∈ so
E
2 (1, q); this proves assertion (4a). Suppose

t1 = 0; since not both λ1 and t1 can vanish, λ1 6= 0. We use assertion (1) to see:

Range T = W1(T ) = Span
{




0
λ1

0
0
...
0



,




0
0
−λ1

0
...
0




}
.

These are orthogonal spacelike vectors and hence W1(T ) is a spacelike 2-plane.

Suppose t1 6= 0, by assertion (1) we have

RangeT = W1(T ) = Span
{




0
t1
0
0
...
0



,




t1
0
−λ1

0
...
0




}
.
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These are orthogonal, linearly independent vectors. If λ2
1 > t21, then both vectors

are spacelike, and W1(T ) is a spacelike 2-plane. If λ2
1 < t21, then the first vector is

spacelike and the second vector is timelike, and W1(T ) is a 2-plane of type (1, 1);

this proves assertions (4b), (4c) and (4d).

Since

T




0
1
0
0
...
0




=




t1
0
−λ1

0
...
0




and T




t1
0
−λ1

0
...
0




=




0
t21 − λ2

1

0
0
...
0




;

assertion (4e) follows. �

4.1.3 Proof of Theorem B. Let S, M, and N be the set of oriented spacelike,

mixed, and null 2-planes in R1,q. We can decompose

Gr+2 (R1,q) = S
.
tM

.
t N .

Note that S and M are open subsets of Gr+2 (R1,q) while N is a closed subset of

Gr+2 (R1,q).

Suppose that R is a rank 2 Lorentzian IP algebraic curvature tensor. If R(π)

is nilpotent for any π in Gr+(0,2)(R
1,q), then we may use Lemma 4.1.2 to see that

W1(R(π)) is spanned by a spacelike vector and a null vector, hence is degener-

ate; conversely if W1(R(π)) is degenerate, since we work in the Lorentzian setting,

W1(R(π)) is spanned by a spacelike vector and a null vector, then necessarily R(π)

is nilpotent. Since the eigenvalues of R(π) are constant on Gr+(0,2)(R
1,q), alternative

(3) holds. Thus if alternative (3) fails, R(π) is not nilpotent and the eigenvalues of

R(π) are nontrivial for any π ∈ Gr+(0,2)(R
1,q). Since Gr+(0,2)(R

1,q) is connected and

since Gr+2 (R1,q) \ N = S
.
t M, this implies either that W1(R(π)) ∈ S for every



58

π ∈ Gr+(0,2)(R
1,q), in which alternative (1) holds, or that W1(R(π)) ∈ M for every

π ∈ Gr+(0,2)(R
1,q), in which case alternative (2) holds. �

4.1.4 Remark: In the proof of Theorem B, we could also use the fact that

the eigenvalues of R(π) are {0,±
√
t21 − λ2

1} on Gr+2 (R1,q) to obtain the desired

trichotomy. We further remark that cases (2) and (3) in Theorem B can only arise

for special values of m; we can eliminate most values of m on an a-priori basis. This

will be made clear in the next section.

§4.2 Most Lorentzian IP Algebraic Curvature Tensors are Spacelike

4.2.1 Theorem. Let R be a rank 2 Lorentzian IP algebraic curvature tensor and

let q ≥ 3. If R is not spacelike, then q = 3, 4, 7, or 8.

Proof. Suppose that R is not spacelike, by Theorem B, R is either mixed or null. Fix

a unit timelike vector ξ and decompose R1,q = Span{ξ}⊕ ξ⊥. Let {x, y} ⊂ ξ⊥ be a

spacelike orthogonal set with x 6= 0 and y 6= 0. Since R(x, y) is skew, R(x, y)ξ ∈ ξ⊥.

If R(x, y)ξ = 0, then

0 = g(R(x, y)ξ, α) = −g(ξ, R(x, y)α) for all α

and hence W1(R(x, y)) ⊂ ξ⊥ = Rq is spacelike which is false. We define a bilinear

map Φ from Rq ×Rq to Rq+1 = R⊕Rq by

Φ(x, y) := g(x, y)⊕R(x, y)ξ.

Suppose x 6= 0 and y 6= 0. If Φ(x, y) = 0, then g(x, y) = 0 so x ⊥ y. Further-

more R(x, y)ξ = 0. Thus R( x
|x| ,

y
|y| )ξ = 0 which is false as { x

|x| ,
y
|y|} is a spacelike

orthonormal subset of Rq. Thus we may apply Lemma 2.6.1 to Φ and complete the

proof. �
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4.2.2 Remark: Theorem 4.2.1 completes the proof of Theorem C (1). Further-

more, if R is null, to prove Theorem (2), we need only to eliminate the cases m = 4

or m = 8. This however requires a surprisingly detailed investigation, so we shall

begin our discussion in the next section.

§4.3 Rank 2 Null Lorentzian IP Algebraic Curvature Tensors

In §4.2, we showed that if R was a rank 2 null Lorentzian IP algebraic curvature

tensor, then q = 3, 4, 7, or 8. This used Lemma 2.6.1. In the proof of Lemma 2.6.1,

we constructed a line bundle L̃ and showed that if L̃ was trivial, then q = 4 or

q = 8. We will complete the proof of Theorem C (2) by showing that L̃ is in fact

trivial. This will be done by constructing an “universal axis”.

We begin our observation with the following somewhat paradoxical observation

that poses a significant epistemological difficulty.

4.3.1 Lemma. If N1, N2 ∈ R1,q are null vectors, then N1 and N2 are linearly

dependent if and only if they are orthogonal.

Proof. Let N1, N2 ∈ R1,q be two nonzero null vectors. Let ξ be a unit timelike

vector. We express Ni = aiξ + si where si ⊥ ξ are spacelike vectors. Since Ni are

null, −a2
i + |si|2 = 0. By replacing Ni by Ni

ai
, we may assume ai = 1, and thus

Ni = ξ + s̃i for s̃i ⊥ ξ a unit spacelike vector. Then g(N1, N2) = g(s̃1, s̃2) − 1. So

g(N1, N2) = 0 if and only if g(s̃1, s̃2) = 1. Since s̃i are unit spacelike vectors and

since the metric g is positive definite on ξ⊥, by the Cauchy-Schwarz inequality, we

have g(s̃1, s̃2) = 1 if and only if s̃1 = s̃2. �

4.3.2 Remark: This is a crucial point at which we use the Lorentzian assumption,

this fails for higher signatures if p ≥ 2 and q ≥ 2. It is also worth noticing that for

any unit timelike vector ξ,

W1(R(π)) = Span{R(π)ξ, R2(π)ξ}.
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This observation played a crucial role in proving Lemma B.1 in Appendix B. Fur-

thermore, we will show shortly in Lemma 4.3.4 that the null vectors R2(π)ξ are

universal.

We now recall several results proved by Gilkey, Leahy and Sadofsky [48] in the

Riemannian setting. Let g be the Euclidean metric on Rn. If T ∈ so(n), then

g(Tξ, η) = −g(ξ, Tη). So we may define ω(T ) ∈ Λ2(Rn) by

ω(T )(ξ, η) := g(Tξ, η).

If e = {e1, ..., en} is an orthonormal basis for Rn, we define

T e
ij(z) := g(ei, z)ej − g(ej, z)ei.

Geometrically, this means T e
ij is a rotation through an angle of π

2 in the oriented

plane spanned by {ei, ej}. Note {T e
ij}i<j is an orthonormal basis for so(n) with

respect to the Killing metric (T1, T2) := −1
2 Tr(T1T2). The following lemma gives

an alternative characterization of the conical subset so2(n) of so(n).

4.3.3 Lemma.

(1) so2(n) = {T ∈ so(n) : ω(T ) ∧ ω(T ) = 0}.

(2) Let T : R2 → so(n) be a 1-1 linear map. Assume T (f) ∈ so2(n) for all f 6= 0.

Then there exist a basis {f1, f2} for R2 and an orthonormal basis e = {e1, ...en}

for Rn so that T (f1) = T e
12 and that T (f2) = T e

13.

Proof. We use the proofs of Lemma 2.1 and Lemma 2.2 given in Gilkey, Leahy and

Sadofsky [48]. Let {ξa, ηa} be an orthonormal basis for W1(T ) := RangeT so that

Tξa = λaηa and Tηa = −λaξa for λa > 0. We use the metric to identify Rn with

the dual vector space (Rn)∗. We then may express

ω(T ) =
∑

1≤a≤rank(T ) λaξa ∧ ηa.
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Consequently, T has rank 2 if and only if ω(T )∧ω(T ) = 0; this proves assertion (1).

To prove assertion (2), we pull back the Killing form on so(n) to define a positive

definite inner product on R2 by

(f, f̃) := −1
2

Tr(T (f)T (f̃)).

This allows us to assume T is an isometry. Let {f1, f2} be an orthonormal basis

for R2 with respect to this inner product, then {T (f1), T (f2)} is an orthonormal

set in so(n). Choose a unit vector e1 ∈ Range(T (f1)). Let e2 = T (f1)e1. Then

{e1, e2} is an orthonormal set which we may complete to a basis e for Rn. We will

further normalize the choice of e3 presently. We expand T (f2) =
∑

k<l a
e
klT

e
kl. Let

ξ = ξ1f1 + ξ2f2. Since T is an isometry, we see that

(4.3.3.a) ξ21 + ξ22 = |T (ξ)|2 = (ξ1 + ae
12ξ2)

2 + ξ22
∑

k<l,(k,l)6=(1,2)(a
e
kl)

2.

We use equation (4.3.3.a) to see that ae
12 = 0 and that

∑
k<l,(k,l)6=(1,2)(a

e
kl)

2 = 1.

Thus

(4.3.3.b) T (ξ) = ξ1T
e
12 + ξ2

∑
(k,l)6=(1,2) a

e
klT

e
kl.

By assertion (1), ω(T (ξ)) ∧ ω(T (ξ))(e1, e2, ei, ej) = 0. Let 2 < i < j, we compute:

0 =ω(T (ξ)) ∧ ω(T (ξ))(e1, e2, ei, ej)

=g(T (ξ)e1, e2)g(T (ξ)ei, ej)− g(T (ξ)e1, ei)g(T (ξ)e2, ej)

+ g(T (ξ)e1, ej)g(T (ξ)e2, ei)

=ξ1ξ2ae
ij + ξ22(−ae

1ia
e
2j + ae

1ja
e
2i).

This shows that

(4.3.3.c) ae
ij = 0 and ae

1ia
e
2j = ae

1ja
e
2i.
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By equations (4.3.3.b) and (4.3.3.c), T (f2) =
∑

2<i(a
e
1iT

e
1i +a

e
2iT

e
2i). By assumption

T (f2) 6= 0, so either ae
1i 6= 0 or ae

2i 6= 0 for some i > 2. By interchanging e1 and e2

if necessary, we may suppose ae
1i 6= 0 for some i > 2. We replace e3 by a suitable

multiple of
∑

2<i a
e
1iei to choose the basis so ae

13 6= 0 and ae
1i = 0 for i > 3. Then

we have

T (f2) = ae
13T

e
13 +

∑
2<i a

e
2iT

e
2i.

We use equation (4.3.3.c) to see that ae
13a

e
2i = ae

1ia
e
23 for i > 3. Thus, ae

1i = 0

implies ae
2i = 0 for i > 3 and

T (f2) = ae
13T

e
13 + ae

23T
e
23.

Set ẽ1 := ae
13e1 + ae

23e2 = T (f2)e3. Since T is an isometry, (ae
13)

2 + (ae
23)

2 = 1. Set

ẽ2 := T (f1)ẽ1, ẽ3 := T (f2)ẽ1, and complete the remaining basis vectors arbitrarily.

It follows that
T (f1)ẽ1 = ẽ2 , T (f1)ẽ2 = −ẽ1;

T (f2)ẽ1 = ẽ3 , T (f2)ẽ3 = −ẽ1.

Relative to the basis ẽ, we have T (f1) = T ẽ
12 and T (f2) = T ẽ

13 as desired. �

We now return to the Lorentzian setting and continue with our preparations

for the proof of Theorem C (2). Let R be a rank 2 null IP Lorentzian algebraic

curvature tensor. Let x ∈ R1,q be a nonnull vector. Let H be a maximal spacelike

hyperplane orthogonal to x. If 0 6= y, z ∈ H, by Lemma 4.1.2, R(x, y)ξ and R(x, z)ξ

are nontrivial spacelike vectors. We introduce a new positive definite inner product

h = hx,ξ on H by

h(y, z) := g(R(x, y)ξ, R(x, z)ξ).

4.3.4 Lemma. Let q ≥ 3. Let R be a rank 2 null IP Lorentzian algebraic

curvature tensor. Let x ∈ R1,q be a nonnull vector. Let H be a spacelike hyperplane
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perpendicular to x and let h = hx,ξ be the positive definite inner product on H. There

is a nonzero null vector NR determined by x and ξ so that R2(x, y)ξ = h(y, y)NR,

for all 0 6= y ∈ H.

Proof. We proceed as follows.

(1) Fix y ∈ H with h(y, y) = 1. Let NR := R2(x, y)ξ. Let 0 6= w ∈ H. If y and

w are linearly dependent, then R2(x, w)ξ = h(w,w)NR. We therefore assume y

and w are linearly independent. Choose z so {y, z} forms an orthonormal set with

respect to the inner product h and so w ∈ Span{y, z}. We then have |R(x, y)ξ|2 = 1,

|R(x, z)ξ|2 = 1, and R(x, y)ξ ⊥ R(x, z)ξ.

(2) Let R(x, y)ξ =
(

0
~t

)
and R(x, z)ξ =

(
0
~s

)
. Then

R(x, y) =
(

0 ~t
(~t)t C1

)
and R(x, z) =

(
0 ~s

(~s)t C2

)
.

(3) For 0 ≤ θ ≤ π, let

R(π(θ)) :=R(x, cos(θ)y + sin(θ)z)

=
(

0 cos(θ)~t+ sin(θ)~s
cos(θ)~t+ sin(θ)~s cos(θ)C1 + sin(θ)C2

)
∈ so

N
2 (1, q).

Since h(y, y) = h(z, z) = 1 and h(y, z) = 0, {~t, ~s} is an orthonormal spacelike

set. Thus we have | cos(θ)~t + sin(θ)~s| = 1. We apply Lemma 4.1.2 (3) to see

that (cos(θ)C1 + sin(θ)C2) ∈ so2(q) for 0 ≤ θ ≤ π and that the eigenvalues of

(cos(θ)C1 + sin(θ)C2) are {0,±
√
−1}. Thus, by Lemma 4.3.3, we can choose a

basis e for Rm−1 so that

C1 = T e
12 =




0 1 0 0 . . . 0
−1 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

... . . .
...

0 0 0 0 . . . 0
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and

C2 = T e
13 =




0 0 1 0 . . . 0
0 0 0 0 . . . 0
−1 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

... . . .
...

0 0 0 0 . . . 0




(4) We use equation (4.1.2.a) to choose vector ~t = (t1, t2, 0, 0, ..., 0) and vector

~s = (s1, 0, s3, 0, ..., 0) so that t21 + t22 = s21 + s23 = 1, that

R(x, y) =




0 t1 t2 0 0 . . . 0
t1 0 1 0 0 . . . 0
t2 −1 0 0 0 . . . 0
0 0 0 0 0 . . . 0
0 0 0 0 0 . . . 0
...

...
...

...
... . . .

...
0 0 0 0 0 . . . 0



,

and that

R(x, z) =




0 s1 0 s3 0 . . . 0
s1 0 0 1 0 . . . 0
0 0 0 0 0 . . . 0
s3 −1 0 0 0 . . . 0
0 0 0 0 0 . . . 0
...

...
...

...
... . . .

...
0 0 0 0 0 . . . 0



.

(5) Since R(x, y)ξ = (0, t1, t2, 0, ..., 0)t ⊥ (0, s1, 0, s3, 0, ..., 0)t = R(x, z)ξ, we see

that t1s1 = 0.

(6) By Lemma B.1 in Appendix B, we have dim[W1(R(x, y)) + W1(R(x, z))] = 3.

Thus,
W1(R(x, y)) +W1(R(x, z))

=Span{(s1, 0, 0,−1,~0)t, (t1, 0,−1, 0,~0)t, (s3, 1, 0, 0,~0)t}.

Since the vector (t2, 1, 0, ..., 0)t ∈W1(R(x, y))+W1(R(x, z)), we must have s3 = t2.

From the relation t21 + t22 = s21 + s23 = 1, it follows that t21 = s21. Since t1s1 = 0, we

have t1 = s1 = 0. Also, we have s3 = t2 = ±1.
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(7) Without loss of generality, we may rescale w so that h(w,w) = 1. Since w

belongs to Span{y, z}, we may write w = cos(θ)y + sin(θ)z. Thus

R2(x, w)ξ = cos2(θ)(1, t2, 0, 0,~0)t + sin2(θ)(1, s3, 0, 0,~0)t

+ cos(θ) sin(θ)R(x, z)(0, 0, t2, 0,~0)t

+ cos(θ) sin(θ)R(x, y)(0, 0, 0, s3,~0)t

= (cos2(θ) + sin2(θ))(1, t2, 0, 0,~0)t

=R2(x, y)ξ. �

We use Lemma 4.3.4 to establish a crucial result.

4.3.5 Lemma. Let q ≥ 3. Let R be a rank 2 null IP Lorentzian algebraic

curvature tensor. Let H be any spacelike hyperplane of dimension q. Then we have

that
⋂

π∈Gr+
2 (H)W1(R(π)) is a nontrivial 1 dimensional null line.

Proof. Let ξ ∈ H⊥ be a unit timelike vector. Let π1, π2 ∈ H. Fix π1 and we

let NR := R2(π1)ξ. Suppose that π1 ∩ π2 6= {0}. We can choose bases so that

π1 = Span{x, y} and that π2 = Span{x, z}. We use Lemma 4.3.4 to see R2(π2)ξ

is a nontrivial multiple of NR. If π1 ∩ π2 = {0}, then we can choose bases so

π1 = Span{x1, y1} and π2 = Span{x2, y2}. Let π3 := Span{x1, x2}. Again we

use Lemma B.1 in Appendix B to see that dim(π1 ∩ π3) = dim(π2 ∩ π3) = 1.

So the nonzero null vectors R2(π1)ξ and R2(π2)ξ are both nontrivial multiples of

R2(π3)ξ. �

4.3.6 Remark: We may call such NR a universal null vector for R. We now

return to complete the proof of Theorem C (2).

4.3.7 Proof of Theorem C (2). Let R be a rank 2 null Lorentzian algebraic

curvature tensor with q ≥ 3. We have shown in Theorem 4.2.1 that q = 3, 4, 7 or 8.

We now use Lemma 4.3.5 to eliminate the cases q = 3 or q = 7 as follows. Choose
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a nonzero null vector NR ∈ R1,q so NR ∈
⋂

π∈Gr+
2 (Rq)W1(R(π)). By Lemma 4.1.2

(2), NR is a nontrivial multiple of R2(x, y)ξ for all pairs of linearly independent

spacelike vectors {x, y} ⊂ ξ⊥ ∼= Rq. So NR is perpendicular to R(x, y)ξ for all

pairs of linearly independent spacelike vectors {x, y} ⊂ ξ⊥ ∼= Rq. This implies

0 ⊕ NR ∈ Rq+1 is perpendicular to the range of Φ(x, y) for all x ∈ Sq−1. Thus

0⊕NR projects to define a nonvanishing global section to the quotient line bundle

L̃ over RP q−1. Hence L̃ = 1 and thus q = 4 or q = 8. �
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CHAPTER V

CLASSIFICATION OF RANK TWO SPACELIKE

IP ALGEBRAIC CURVATURE TENSORS

In chapter V, we prove Theorem D by classifying rank 2 spacelike or timelike IP

algebraic curvature tensor for q = 6 or q ≥ 9. We complete the proof of Theorem D

by showing that any rank 2 spacelike or timelike IP algebraic curvature tensor has

the form R = RC,φ for an admissible pair (C, φ). Our crucial task is to build the map

φ. If x is a unit spacelike vector, we will show that ∩y⊥x,|y|=1W1(R(x, y)) = L(x)

is a line. This defines a line bundle L over the set of unit spacelike vectors. We will

show that this line bundle is trivial and choose a global unit section φ to L. We

will then show that φ extends to a linear map of Rp,q that is an isometry if R is

spacelike and a para-isometry if R is timelike. It will then follow that R = RC,φ for

some C 6= 0. We will use the Bianchi identities to show φ2 = id if R is spacelike

and that φ2 = − id if R is timelike. Here is a brief outline to chapter V. In §5.1, we

begin our study with some algebraic preliminaries. In §5.2, we first construct the

line bundle L, then show L is trivial. We subsequently construct φ and show it has

the required properties. In §5.3, we prove Theorem D and Theorem G (1).
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§5.1 Linear Algebra Technical Lemmas

The following technical lemma is needed to simplify some later calculations.

5.1.1 Lemma.

(1) Let πi be spacelike p-planes for i = 1, 2. There exist orthonormal bases {uν}

and {vν} for π1 and π2 respectively so that g(uν, vµ) = 0 for ν 6= µ.

(2) Let T be a rank 2 spacelike IP algebraic curvature tensor with eigenvalues

{0,±
√
−1}. Then T induces a unitary almost complex structure on W1(T ).

Proof. (1) Let ρi be orthogonal projection on πi for i = 1, 2. If {vν} is an orthonor-

mal basis for π2, then for any v, we have ρ2(v) =
∑

ν g(v, vν)vν . Define a symmetric

bilinear form on π1 by

h(ξ, η) := g(ρ2(ξ), ρ2(η)).

Since π1 is spacelike, the metric on π1 is positive definite. We can diagonalize h with

respect to this metric to find an orthonormal basis {uν} for π1 so that h(uν , uµ) = 0

for ν 6= µ. Thus g(ρ2(uν), ρ2(uµ)) = 0 for ν 6= µ, and g(ρ2(uν), ρ2(uν)) = λν . Let I

be the set of all ν so that ρ2(uν) 6= 0. For ν ∈ I, let vν := ρ2(uν)
|ρ2(uν)| . Note that if ν 6∈ I

then we have ρ2(uν) = 0, i.e. λν = 0. We extend {vν}ν∈I to a full orthonormal

basis for π2. We check that the bases {uν} and {vµ} satisfy the conclusions of (1)

by checking

g(uν, vµ) = g(ρ2(uν), vµ) = g(
√
λνvν , vµ) = 0 for µ 6= ν.

(2) Assume that T is a rank 2 spacelike IP algebraic curvature tensor. Since W1(T )

is spacelike, we may decompose Rp,q = W1(T )⊕W1(T )⊥. Since W1(T ) = Range(T ),

W1(T ) is preserved by T . As T is skew-symmetric, T vanishes on W1(T )⊥. The

eigenvalues of T 2 are {0,−1}. Since the eigenvalue −1 has multiplicity 2, T 2 = −1

on W1(T ). Thus T defines a unitary almost complex structure on W1(T ). �
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5.1.2 Lemma. Let R be a rank 2 spacelike IP algebraic curvature tensor. Let

{x, y, z} be an orthonormal set of spacelike vectors. Then there exists an orthonor-

mal set of spacelike vectors {α, β, γ} so that

W1(R(x, y)) = Span{α, β} and W1(R(x, z)) = Span{α, γ}.

Proof. We adopt the notation used to prove Lemma B.1 in Appendix B to see that

dim[W1(T1) ∩W1(T2)] = 1. Let α ∈ W1(T1) ∩W1(T2) be a unit spacelike vector.

By rescaling we may assume R has eigenvalues {0,±
√
−1}. Let β := T1α and let

γ := T2α. Then we have that {α, β, γ} are linearly independent. Furthermore,

we see that W1(T1) + W1(T2) = Span{α, β, γ}, that α ⊥ β, and that α ⊥ γ. We

compute:

T2β = g(T2β, α)α+ g(T2β, γ)γ = −g(β, T2α)α− g(β, T2γ)γ

= −g(β, γ)α+ g(β, α)γ = −g(β, γ)α.

T1γ = g(T1γ, α)α+ g(T1γ, β)β = −g(γ, T1α)α− g(γ, T1β)β

= −g(γ, β)α+ g(γ, α)β = −g(β, γ)α.

For θ ∈ [0, π], let π(θ) := Span{α, cos(θ)β + sin(θ)γ}. Then

R(π(θ))α = (cos(θ)T1 + sin(θ)T2)α = cos(θ)β + sin(θ)γ,

R(π(θ))β = (cos(θ)T1 + sin(θ)T2)β = −{cos(θ) + g(β, γ) sin(θ)}α,

R(π(θ))γ = (cos(θ)T1 + sin(θ)T2)γ = −{g(β, γ) cos(θ) + sin(θ)}α.

Thus relative to the basis {α, β, γ}, R(π(θ)) has the form:

R(π(θ)) =


 0 −{cos(θ) + g(β, γ) sin(θ)} −{g(β, γ) cos(θ) + sin(θ)}

cos(θ) 0 0
sin(θ) 0 0


 .

Let χθ(λ) be the characteristic polynomial of R(π(θ)) acting on the space spanned

by {α, β, γ}; this space is R(π(θ)) invariant and containing the range of R(π(θ)).
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Thus since R is IP, χθ(λ) is independent of θ and χθ(λ) must have roots {0,±
√
−1}

for all θ ∈ [0, π]. We compute:

χθ(λ) = det


 λ {cos(θ) + g(β, γ) sin(θ)} {g(β, γ) cos(θ) + sin(θ)}
− cos(θ) λ 0
− sin(θ) 0 λ




= λ3 + λ{1 + 2g(β, γ) sin(θ) cos(θ)}.

Since Spec(R(π(θ))) is independent of θ by assumption, 2g(β, γ) sin(θ) cos(θ) ≡ 0

for all θ ∈ [0, π]. Thus we must have g(β, γ) = 0. Our assertion now follows. �

5.1.3 Corollary. Let R be a rank 2 spacelike IP algebraic curvature tensor. Fix

a unit spacelike vector x. Then for any spacelike vector y, z ⊥ x, we have

Tr(R(x, y)R(x, z)) = −2g(y, z).

Proof. Let {x, y, z} be an orthonormal set. We adopt the notation used to prove

Lemma 5.1.2 to see that

T1α = β, T2α = γ, T1β = −α, T2β = 0, T1γ = 0, T2γ = −α;

T1T2α = T1γ = 0, T1T2β = 0, and T1T2γ = T1(−α) = −β.

Hence Tr(T1T2) = 0. Thus Tr(R(x, y)R(x, z)) = −2g(y, z) in this special situation.

More generally, we use multilinearity to see that for any spacelike vectors y, z ⊥ x,

we have Tr(R(x, y)R(x, z)) = −2g(y, z). �

§5.2 The “Common Axis” Lemma and Its Consequences

We assume q ≥ 6 henceforth. In this section, we prove the “common axis”

lemma and then construct admissible pair (C, φ) so that R = RC,φ. We introduce

the following definition.

5.2.1 Definition. If H is a linear subspace of Rp,q, let S(H) := {v ∈ H : |v| = 1}

and let P (H) := S(H)/Z2 be the associated projective space. If x ∈ S(Rp,q), we

set

P (x) := {π ∈ Gr+(0,2)(R
p,q) : x ∈ π} an L(x) := ∩π∈P (x)W1(R(π)).
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We now show that L(x) is 1 dimensional; this line will be called the “common axis”

defined by x.

5.2.2 Lemma. Let R be a rank 2 spacelike (or timelike) IP algebraic curvature

tensor. Suppose that q ≥ 6. If x ∈ S(Rp,q), then dimL(x) = 1.

Proof. Suppose R is spacelike. Fix x ∈ S(Rp,q). Let H be any spacelike subspace

of Rp,q which contains x with dimH ≥ 3. Let

P (x,H) := {π ∈ Gr+2 (H) : x ∈ H} ⊂ P (x), and

L(x,H) := ∩π∈P (x,H)W1(R(π)) ⊇ L(x).

We first establish that dimL(x,H) = 1. We use Lemma B.1 in Appendix B to

see that dimL(x,H) ≤ 1. Suppose that dimL(x,H) = 0; we shall argue for a

contradiction. We may suppose without loss of generality that H is maximal so

that dimH = q ≥ 6. Let H̃ := H ∩ x⊥. If y ∈ S(H̃), let

π(y) := span{x, y} and σ(y) := W1(R(π(y))).

Let ỹ ∈ S(H̃). By Lemma B.1 in Appendix B, if y 6= ±̃y, then L(y, ỹ) := σ(y)∩σ(ỹ)

is a line. Since dimL(x,H) = 0, there must exist unit vectors {yi} in H̃ so that

σ(y1) ∩ σ(y2) ∩ σ(y3) = {0}.

Let E := σ(y1) + σ(y2). We use Lemma B.1 in Appendix B to see that E is a

3-plane. Moreover, since L(y1, y3) = σ(y1) ∩ σ(y3) and L(y2, y3) = σ(y2) ∩ σ(y3),

L(y1, y3) ∩ L(y2, y3) = σ(y1) ∩ σ(y2) ∩ σ(y3) = {0}, so L(y1, y3) and L(y2, y3) are

different lines contained in σ(y3). Thus

σ(y3) = span{L(y1, y3), L(y2, y3)} ⊂ E.
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Let y ∈ S(H̃) and suppose y 6= ±yi for i = 1, 2, 3. If L(y1, y) = L(y2, y) = L(y3, y),

then these three lines coincide and

L(y3, y) ⊂ σ(y1) ∩ σ(y2) ∩ σ(y3) = {0} which is false.

Thus at least two of these lines are different so

σ(y) = span{L(y1, y), L(y2, y), L(y3, y)} ⊂ σ(y1) + σ(y2) + σ(y3) = E.

Now we have a well defined continuous map σ : P (H̃) → Gr2(E) which is injective.

This is impossible for dimensional reasons; because q ≥ 6 we have

dimP (H̃) = q − 2 > dimGr2(E) = 2.

The argument given above shows that dimL(x,H) = 1. To complete the proof,

we need only show that dimL(x) = 1. Suppose that dimL(x) = 0. We must then

have planes πi ∈ P (x) so that

(5.2.2.a) W1(R(π1)) ∩W1(R(π2)) ∩W1(R(π3)) = {0}.

Let {x, yi} be an orthonormal basis for πi. Let H(x) be a maximal spacelike sub-

space containing x. Because q = dimH ≥ 6, we can find an orthonormal set

{z1, z2} ⊂ H(x) ∩ x⊥ ∩ y⊥1 ∩ y⊥2 ∩ y⊥3 .

Let Hi := span{x, yi, z1, z2}. This is a spacelike set for i = 1, 2, 3. Consequently

the argument given above shows W1(R(x, z1)) ∩W1(R(x, z2)) ⊂ W1(R(x, yi)) for

i = 1, 2, 3. This contradicts equation (5.2.2.a) and our assertion follows. We argue

similarly if R is timelike. �
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Let R be a rank 2 spacelike IP algebraic curvature tensor. Since L(x) = L(−x),

we may use Lemma 5.2.2 to define a map

L : Gr(0,1)(Rp,q) → Gr(0,1)(Rp,q)

from the set of spacelike lines to the set of spacelike lines; we showed in Lemma

2.6.2 that this map is continuous.

5.2.3 Lemma. Let q = 6 or q ≥ 9. Let R be a rank 2 spacelike IP algebraic

curvature tensor. Let τi ∈ Gr(0,1)(Rp,q) for i = 1, 2.

(1) If L(τ1) = L(τ2), then τ1 = τ2.

(2) If τ1 ⊥ τ2, then L(τ1) ⊥ L(τ2). Furthermore, if xi are unit spacelike vectors

spanning the lines τi, then W1(R(x1, x2)) = L(τ1)⊕L(τ2) is an orthogonal direct

sum decomposition.

Proof. Let τ1 and τ2 be distinct lines. To establish assertion (1), we suppose that

L(τ1) = L(τ2) and argue for a contradiction. We first show in Step 1 that for any

τ ∈ Gr(0,1)(Rp,q), L(τ) = L(τ1); let L be this “universal common axis”. We then

use topological methods to derive the desired contradiction in Step 2.

Step 1. Let xi be unit spacelike vectors spanning the lines τi ∈ Gr(0,1)(Rp,q) for

i = 1, 2, 3. Suppose L(τ1) = L(τ2). We wish to show L(τ3) = L(τ1) so L is the

“universal common axis”. Because q ≥ 5, we may choose an orthonormal spacelike

subset {y1, y2} of Rp,q so that yi ⊥ xj for i = 1, 2 and j = 1, 2, 3. We use Lemma

B.1 in Appendix B to see that

W1(R(x1, y1)) ∩W1(R(x1, y2)) = L(x1) = L(x2) = W1(R(x2, y1)) ∩W1(R(x2, y2).

We use Lemma B.2 in Appendix B to see that

L(x1) ⊂W1(R(x1, yi)) ∩W1(R(x2, yi)) = L(yi)
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so L(yi) = L(x1) for i = 1, 2. Thus L(x1) ⊂ W1(R(x3, yi)) for i = 1, 2. Since

{x3, y1, y2} is an orthonormal set, we see that L is a “common axis” by checking:

L(x1) ⊂W1(R(x3, y1)) ∩W1(R(x3, y2)) = L(x3).

Step 2. Let H be a maximal spacelike subspace of Rp,q; we then have that H⊥

is a maximal timelike subspace and that Rp,q = H ⊕ H⊥. Let ρH be orthogonal

projection of Rp,q onto H. Let {y1, y2} be any orthonormal subset of H and suppose

that ρHR(y1, y2)L = 0. Since L ⊂W1(R(y1, y2)), R(y1, y2)L is a spacelike line. But

ρHR(y1, y2)L = 0 implies R(y1, y2)L ⊂ H⊥ so R(y1, y2)L is timelike. This is false.

Thus ρHR(y1, y2)L 6= 0. Let λ be a unit vector in L. We now define a bilinear map

Φ : H ×H → R ⊕H y Φ(h1, h2) := g(h1, h2)⊕ ρHR(h1, h2)λ.

We show Φ is nonsingular as follows. Suppose h1 6= 0 and h2 6= 0. If Φ(h1, h2) = 0,

then g(h1, h2) = 0 so h1 ⊥ h2. Furthermore ρHR(h1, h2)λ = 0. It follows that

ρHR( h1
|h1| ,

h2
|h2| )λ = 0 which is false as { h1

|h1| ,
h2
|h2|} is an orthonormal subset of H. We

apply Lemma 2.6.1 to H = Rq to complete the proof of assertion (1).

We clear the previous notation to prove assertion (2). Let {x1, x2} be an or-

thonormal set of spacelike vectors. Since q ≥ 3, we may choose a third unit space-

like vector x3 which is perpendicular to x1 and x2. Let λi be unit vectors in

L(xi). We will show λ1 ⊥ λ2. Since {λ1, λ2} ⊂W1(R(x1, x2)), this will then imply

W1(R(x1, x2)) = L(x1)⊕ L(x2) is an orthogonal direct sum decomposition.

We choose {v1, λ3} and {v2, λ3} to be orthonormal bases for the spacelike 2-

planes W1(R(x1, x3)) and W1(R(x2, x3)) respectively. By Lemma 5.1.2, these two

planes meet at right angles, v1 ⊥ v2 so {v1, v2, λ3} is an orthonormal set. Since

λ1 ∈W1(R(x1, x3)) and λ2 ∈W1(R(x2, x3)), we may choose angles θi so that

λ1 = cos(θ1)λ3 + sin(θ1)v1 and λ2 = cos(θ2)λ3 + sin(θ2)v2.
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As xi 6= ±x3, sin(θi) 6= 0 for i = 1, 2 by assertion (1). We define λ̃i ∈W1(R(xi, x3))

with λ̃i ⊥ λi by:

λ̃1 := − sin(θ1)λ3 + cos(θ1)v1 and λ̃2 := − sin(θ2)λ3 + cos(θ2)v2.

We use the fact that λ1 ∈ W1(R(x1, x3)) ∩W1(R(x1, x2)), the fact that these two

planes are perpendicular, and the fact that λ̃1 ⊥ λ1 to see λ̃1 ⊥ W1(R(x1, x2)), so

in particular λ̃1 ⊥ λ2. Since {v1, v2, λ3} is an orthonormal set,

0 = g(λ̃1, λ2) = − sin(θ1) cos(θ2).

Since sin(θ1) 6= 0, we have cos(θ2) = 0 and thus λ1 = ±v1. A similar argument

shows that λ2 = ±v2. �

The map x → L(x) is a continuous map from S(Rp,q) to Gr(0,1)(Rp,q). By

Theorem 1.2.8 S(Rp,q) is simply connected, so we can lift this map to a map φ :

S(Rp,q) → S(Rp,q). We extend φ radially to the set of all spacelike vectors in Rp,q

by defining

φ(0) := 0 and φ(x) := |x| · φ(|x|−1x) if |x| > 0.

We use Lemma 5.2.3 to show:

5.2.4 Lemma. Let q = 6 or q ≥ 9. Let R be a rank 2 spacelike IP algebraic

curvature tensor.

(1) If π ∈ Gr(0,2)(Rp,q), then φ|π is a linear isometric embedding.

(2) We may extend φ to a linear isometry of Rp,q.

Proof. Let {x, y} be an orthonormal basis for a spacelike 2-plane π. Choose z so

{x, y, z} is an orthonormal set. Let T1 := R(x, z) and T2 := R(y, z). For θ ∈ [0, 2π],

let π(θ) := Span{cos(θ)x+ sin(θ)y, z}. Then we have

R(π(θ)) = R(cos(θ)x+ sin(θ)y, z) = cos(θ)T1 + sin(θ)T2.
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Since {cos(θ)x + sin(θ)y, z} is an orthonormal basis for π(θ), we may use Lemma

5.2.3 to see that

W1(R(π(θ))) = L(cos(θ)x+ sin(θ)y)⊕L(z)

is an orthogonal direct sum decomposition. On the other hand, by rescaling we may

assume R has eigenvalues {0,±
√
−1}, so by Lemma 5.1.1, R(π(θ)) is a 90◦ rotation

in W1(R(π(θ))) = Range(R(π(θ))). Thus

L(cos(θ)x+ sin(θ)y) = R(π(θ))L(z)

= R(π(θ))φ(z) ·R

= (cos(θ)T1 + sin(θ)T2)φ(z) ·R.

Thus φ(cos(θ)x+sin(θ)y) = ε(θ)(cos(θ)T1 +sin(θ)T2)φ(z) for any θ with ε(θ) = ±1.

By continuity, the choice of ε is independent of θ. Therefore φ(x) = εT1φ(z) and

φ(y) = εT2φ(z), so we have the identity:

φ(cos(θ)x+ sin(θ)y) = cos(θ)φ(x) + sin(θ)φ(y).

It now follows that φ(−x) = −φ(x) so φ(λx) = λφ(x) for all λ ∈ R. Consequently

for any λ and θ we have:

φ(λ cos(θ)x+ λ sin(θ)y) = λ cos(θ)φ(x) + λ sin(θ)φ(y).

This shows that the map φ is linear on π. Since |φ(z)| = |z| for any spacelike vectors,

φ is an isometric embedding of π; this proves assertion (1) .

We extend φ to all vectors in Rp,q as follows. Let v ∈ Rp,q. Choose z spacelike

with z ⊥ v so that |z|2 > |v|2. Then z and z + v are spacelike so

φz(v) := φ(z + v)− φ(z) is well defined.
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If v is spacelike, then Span{z, v} is spacelike and hence φz(v) = φ(v). We check this

is independent of the choice of z as follows. Suppose zi are spacelike vectors with

zi ⊥ v and |zi|2 > |v|2. Since q ≥ 6, we may choose w spacelike with w ⊥ {z1, z2, v}

and |w| large. Since the planes {zi +v, w}, {zi, w}, {v+w, zi} are spacelike we may

use assertion (1) to see that φzi
(v) is independent of the choice of zi by computing:

φzi
(v) =φ(zi + v)− φ(zi)

=φ(v + zi) + φ(w)− φ(zi)− φ(w)

=φ(v + zi + w)− φ(zi + w)

=φ(v + w + zi)− φ(w + zi)

=φ(v + w) + φ(zi)− φ(w)− φ(zi)

=φ(v + w)− φ(v).

The proof that φ is linear is similar. Let {v1, v2} be given. Choose z spacelike with

z ⊥ {v1, v2}. We may then argue if ε is sufficiently large that:

φ(v1 + v2) =φ(v1 + v2 + εz)− φ(εz)

=φ(v1 + v2 + εz)− φ(v2 + εz)

+ φ(v2 + εz)− φ(εz)

=φ(v1) + φ(v2).

Let λ1 6= 0. We complete the proof that φ is linear by checking that:

φ(λ1v1) =φ(λ1v1 + λ1εz)− φ(λ1εz)

=λ1φ(v1 + εz)− λ1φ(εz)

=λ1φ(v1).

Let Qφ(x) := |φ(x)|2 − |x|2. This is a quadratic function on Rp,q as φ is linear.

Furthermore, Qφ(x) vanishes by construction if x is a spacelike vector. Thus Qφ
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vanishes on the nonempty open set of nonzero spacelike vectors. Thus all the partial

derivatives of Qφ vanish on this open set. Since Qφ is quadratic, Qφ vanishes

identically. Hence φ is an isometry. �

The timelike case is similar. The domain and the range have been decoupled

to this point; thus the sign of the target metric is irrelevant. We say that a map

φ : Rp,q → Rp,q is an para-isometry if we have that g(φ(v), φ(v)) = −g(v, v); this

necessarily implies that p = q. The proof given of Lemma 5.2.4 extends immediately

to establish the following assertion:

5.2.5 Lemma. Let q = 6 or q ≥ 9. Let R be a rank 2 timelike IP algebraic

curvature tensor.

(1) If π ∈ Gr(0,2)(Rp,q), then φ|π is a linear para-isometric embedding.

(2) We may extend φ to a linear para-isometry of Rp,q.

§5.3 Classification of Rank 2 Spacelike IP Algebraic Curvature Tensors

We recall some notation from §1.2.4. Let (C, φ) be an admissible pair, we define:

RC,φ(x, y) : z → C{g(φ(y), z)φ(x)− g(φ(x), z)φ(y)}.

Recall that φ is unipotent (of order 2) if φ2 = id and that φ is unipotent (of order

4) if φ2 = − id.

We now consider a special case. Let R := R1,id. Then we have

(5.3.0.a) R(x, y) : z → g(y, z)x− g(x, z)y.

5.3.1 Proof of Theorem D. We prove assertion (1) of Theorem D as follows. we

first assume that φ is an unipotent (of order 2) isometry of Rp,q. Let π = Span{x, y}

be an oriented spacelike 2-plane. From equation (5.3.0.a), we see that R preserves
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the 2-plane π; R(x, y) : y 7→ x and R(x, y) : x 7→ −y. It vanishes on π⊥. Thus

R is IP of rank 2. More generally, for any C 6= 0, since φ is an isometry and

since φ2 = id, we have RC,φ(π) = CR(φπ) and hence RC,φ is IP of rank 2 for

C 6= 0. We now verify that RC,φ satisfies the curvature identities. It is immediate

that RC,φ(x, y) = −RC,φ(y, x). Since φ is an isometry and since φ2 = id, we have

g(φ(u), v) = g(u, φ(v)). Thus we may check that RC,φ satisfies the second curvature

identity by computing that:

g(RC,φ(x, y)z, w) =C{g(φ(y), z)g(φ(x), w)− g(φ(x), z)g(φ(y), w)}

=C{g(y, φ(z))g(x, φ(w))− g(x, φ(z))g(y, φ(w))}

=g(RC,φ(z, w)x, y).

We may also verify that the Bianchi identities are satisfied by computing:

RC,φ(x, y)z +RC,φ(y, z)x+RC,φ(z, x)y

=C{g(φ(y), z)φ(x)− g(φ(x), z)φ(y) + g(φ(z), x)φ(y)− g(φ(y), x)φ(z)

+ g(φ(x), y)φ(z)− g(φ(z), y)φ(x)}

=0.

We now consider φ is an unipotent (of order 4) para-isometry. For any C 6= 0, we still

have RC,φ(π) = CR(φπ) and hence RC,φ is IP of rank 2. We now verify that RC,φ

satisfies the curvature identities. It is immediate that RC,φ(x, y) = −RC,φ(y, x).

Since φ is a para-isometry and since φ2 = − id, we have

g(φ(u), v) = −g(φ2(u), φ(v)) = −g(−u, φ(v)) = g(u, φ(v)).

Thus we may check that RC,φ satisfies the second curvature identity by computing

that:

g(RC,φ(x, y)z, w) =C{g(φ(y), z)g(φ(x), w)− g(φ(x), z)g(φ(y), w)}

=C{g(y, φ(z))g(x, φ(w))− g(x, φ(z))g(y, φ(w))}

=g(RC,φ(z, w)x, y).
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We may also verify that the Bianchi identities are satisfied by computing:

RC,φ(x, y)z +RC,φ(y, z)x+RC,φ(z, x)y

=C{g(φ(y), z)φ(x)− g(φ(x), z)φ(y) + g(φ(z), x)φ(y)− g(φ(y), x)φ(z)

+ g(φ(x), y)φ(z)− g(φ(z), y)φ(x)}

=0.

We now prove assertion (2) of Theorem D. We use Lemma 5.2.4 to define a

linear map φ on Rp,q so that φ(x) ∈ L(x) for any unit spacelike vector x. If R is

spacelike, then φ is an isometry; if R is timelike, then φ is a para-isometry. Assume

R has eigenvalues {0,±C
√
−1} for some constant C 6= 0. By rescaling, we may

assume that C = 1. Let {x, y} be an oriented orthonormal basis for a spacelike

2-plane π. Since {φ(x), φ(y)} is an orthonormal basis for W1(R(π)) = φ(π) and

since R(π) is an almost complex structure on W1(R(π)),

R(π)φ(y) = ε(π)φ(x) and R(π)φ(x) = −ε(π)φ(x)

where ε(π) = ±1. Since Gr+(0,2)(R
p,q) is connected and ε is continuous, ε is inde-

pendent of π. Again, by rescaling R if necessary, we may suppose that ε ≡ +1.

Thus

(5.3.1.a) R(x, y) : z → g(φ(y), z)φ(x)− g(φ(x), z)φ(y) for all z ∈ Rp,q.

Since both sides of this identity are bilinear and skew-symmetric in (x, y), this

identity holds as long as {x, y} spans a spacelike 2-plane. Since the identity is

trilinear and holds on a nonempty open set of (Rp,q)3, it holds identically for all

(x, y, z); the argument is the same as that given using partial derivatives to show

that φ was quadratic in the proof of Lemma 5.2.4 and is therefore omitted.
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We now study φ2. Let {x, y} be an orthonormal subset of Rp,q which spans

a spacelike 2-plane π. We apply the Gram-Schmidt process to {x, y} to extend

to a full orthonormal basis {x, y, ei} for Rp,q. Since φ is either an isometry or a

para-isometry, φ(x) ⊥ φ(ei) and φ(y) ⊥ φ(ei) for all i. We use the second curvature

symmetry and equation (5.3.1.a) to compute:

g(R(φ(x), φ(y))x, ei) =g(R(x, ei)φ(x), φ(y))

=g(φ(ei), φ(x))g(φ(x), φ(y))

− g(φ(x), φ(x))g(φ(ei), φ(y))

=0.

Since g(R(φ(x), φ(y))x, x) = 0, we have R(φ(x), φ(y))x = λy for some λ. We show

that λ = −1 by computing:

λ = g(R(φ(x), φ(y))x, y) = g(R(x, y)φ(x), φ(y)) = −1.

This shows that x ∈W1(R(φ(x), φ(y)), so consequently x ∈ L(φ(x)). Thus we have

φ(φ(x)) = ε(x)x where ε(x) = ±1; again, continuity implies ε is independent of x.

Let g(φ(u), φ(v)) = δg(u, v) and φ2 = ε id. Let {x, y} be an orthonormal

spacelike set so that x ⊥ φ(y). We show ε = δ by computing:

0 =R(x, y)φ(x) +R(φ(x), x)y +R(y, φ(x))x

=C{g(φ(y), φ(x))φ(x)− g(φ(x), φ(x))φ(y) + g(φ(x), y)φ2(x)

− g(φ2(x), y)φ(x) + g(φ2(x), x)φ(y)− g(φ(y), x)φ2(x)}

=C{−δφ(y) + εφ(y)}. �

5.3.2 Proof of Theorem G (1). Let m ≥ 10. Let R be a nontrivial Lorentzian

IP algebraic curvature tensor on R1,m−1. Theorem A (1) implies rankR = 2. We

use Theorem B to see that either R is spacelike or R is mixed or R is null. We
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use Theorem C to see that R is not mixed or null. Thus R is spacelike. We use

Theorem D to see that R = RC,φ for an admissible pair (C, φ) with φ an unipotent

(of order 2) isometry of R1,m−1. �

5.3.3 Remark: The classification of rank 2 spacelike IP algebraic curvature

tensors exhibits an analogue of the Rakić Duality in this setting: Let q = 6 or

q ≥ 9. Let R be a rank 2 spacelike IP algebraic curvature tensor. Let π and σ be

two spacelike 2-planes in Rp,q. We have R(π)σ ⊆ σ if and only if R(σ)π ⊆ π.
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CHAPTER VI

SOME EXAMPLES OF PSEUDO-RIEMANNIAN MANIFOLDS

In chapter VI, we prove Theorems E and F and we complete the proof of The-

orem G. We shall henceforth assume m ≥ 10. In §6.1, we generalize the argument

given by Gilkey, Leahy and Sadofsky [48] to prove Theorem E. In §6.2, we generalize

the warped product construction of Gilkey, Leahy and Sadofsky, and of Ivanov and

Petrova to higher signatures to prove Theorem F. In §6.3, we first show that any C-φ

type metric is a warped product of an interval with a metric of constant sectional

curvature. We subsequently use the seven steps outlined in §1.4.2 to complete the

proof of Theorem G. In §6.4, we discuss the orthogonal equivalence of the curvature

tensors RC,φ.

§6.1 The Geometric Realizability of IP Algebraic Curvature Tensors

6.1.1 Definition. A metric gM is said to be C-φ type if there exists a smooth

nonzero function C(x) on M and if there exists a smooth section φ to the bundle

of unipotent (of order 2) isometries or unipotent (of order 4) para-isometries of the

tangent bundle so that RgM
= RC,φ at each point of M . We shall focus on the case

where φ is an unipotent (of order 2) isometry.

In Lemma 6.1.2, we show any unipotent (of order 2) isometry φ induces an

orthogonal direct sum decomposition Rp,q = E+ ⊕ E− into the ±1 eigenspaces of

φ. In Lemma 6.1.6, we give a geometric realization of this tensor. In Theorem E,
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we show RC,φ is not geometrically realizable by a C-φ type IP metric if dimE+ > 1

and if dimE− > 1.

6.1.2 Lemma. Let φ be an unipotent (of order 2) isometry of Rp,q. There exists

an orthonormal basis for Rp,q which diagonalizes φ.

Proof. Let φ ∈ O(p, q) with φ2 = id; then necessarily φ = φ∗. Let E± be the ±1

eigenspaces of φ. For any x ∈ Rp,q, we can write

x = 1
2 (x+ φx) + 1

2 (x− φx).

Since 1
2
(x± φx) ∈ E±, we have Rp,q = E+ +E−. If x± ∈ E±, then we have:

g(x+, x−) = g(φx+, x−) = g(x+, φx−) = −g(x+, x−).

Thus E+ ⊥ E−. So Rp,q = E+ ⊕ E− is an orthogonal direct sum decomposition.

Let g± := g|E± . Since E+ ⊥ E−, we have g = g+ ⊕ g−. Since the metric g is

nondegenerate, the metrics g± are nondegenerate on E±. Consequently, we can

find bases diagonalizing g± and φ. �

6.1.3 Definition. We say that {ei} is a normalized orthonormal basis for Rp,q,

if

g(ei, ei) = εiei and φ(ei) = δiei where εi = ±1, δi = ±1.

We omit the proof of the following lemma as it is an immediate algebraic consequence

of the definitions given above.

6.1.4 Lemma. Let {ei} be a normalized orthonormal basis. Then we have :

RC,φ(ei, ej , ej, ei) = Cεiεjδiδj for i 6= j,

RC,φ(ei, ej , ek, e`) = 0 for (i, j) 6= (k, `) and (i, j) 6= (`, k).

RC,φ(ei, ej)ej = Cεjδiδjei for i 6= j

RC,φ(ei, ej)ek = 0 for i 6= k and j 6= k.
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We use Lemma 6.1.2 to diagonalize φ and define an orthogonal direct sum decom-

position Rp,q = E+ ⊕ E−, where E± are the ±1 eigenspaces of φ. The restrictions

of g to E± determine nondegenerate metrics g± of signatures (p±, q±) and permit

us to further decompose E± according to g±. Thus we have the orthogonal direct

sum decomposition Rp,q = E++ ⊕ E+− ⊕ E−+ ⊕ E−−. The notation is chosen so

that φ = +1 on E++ ⊕ E+−, so that φ = −1 on E−+ ⊕ E−−, so that g is positive

definite on E++ ⊕ E−+, and so that g is negative definite on E+− ⊕ E−−.

6.1.5 Definition. Let

r± := dimE±, p+ := dimE++, q+ := dimE+−,

p− := dimE−+, and q− := dimE−−.

Then p+ + q+ = r+, p− + q− = r−, p+ + p− = q, and q+ + q− = p.

The following lemma gives a geometric realization of RC,φ.

6.1.6 Lemma. Let φ be an unipotent (of order 2) isometry of Rp,q. Choose a

normalized orthonormal basis {ei} and introduce coordinates x =
∑

i xiei on Rp,q.

Let

ds2C,φ :=
∑

i

{
εi

(
1− C

2

∑
j 6=i εjδiδjx

2
j

)
dx2

i

}
.

This defines a nondegenerate metric of signature (p, q) near the origin so that the

coordinate frame ei := { ∂
∂xi
} is a normalized orthonormal basis at the origin. We

have that R(0) = RC,φ.

Proof. Let {∂i := ∂
∂xi

: 1 ≤ i ≤ p + q} be the standard coordinate frame on Rp,q.

Let

gij/k := ∂kg(∂i, ∂j) and gij/kl := ∂l∂kg(∂i, ∂j).

We compute:

(1) g(∂i, ∂i)(0) = εi, where εi = ±1.

(2) g(∂i, ∂j)(0) = 0 for i 6= j.

(3) gij/k(0) = 0 for 1 ≤ i, j ≤ p+ q.
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Relative to this coordinate frame, we have:

Γijk = 1
2(gjk/i + gik/j − gij/k).

Thus Γijk(0) = 0. We compute:

(6.1.6.a)

Rijk`(0) =g((∇∂i
∇∂j

−∇∂j
∇∂i

)∂k, ∂`)(0)

=g(∂iΓjk` − ∂jΓik`)(0)

= 1
2

[
gj`/ik(0) + gk`/ij(0)− gjk/i`(0)

− gi`/jk(0)− gk`/ij(0) + gik/j`(0)
]

= 1
2

[
gik/j`(0) + gj`/ik(0)− gjk/i`(0)− gi`/jk(0)

]
.

We use the definition and (6.1.6.a) to compute

Rijk`(0) = 0 for (i, j) 6= (k, `) and (i, j) 6= (`, k);

Rijji(0) = −1
2 [gii/jj(0) + gjj/ii(0)] = Cεiεjδiδj . �

6.1.7 Remark: This metric need not be IP away from the origin.

We now introduce contraction of tensors which is needed later in our discussion.

6.1.8 Definition. Let the natural map c : ⊗4(T ∗M) → ⊗2(T ∗M) be defined on

pure tensors by

c(ω1 ⊗ ω2 ⊗ ω3 ⊗ ω4) := g(ω2, ω3)ω1 ⊗ ω4.

Since this map is bilinear, it extends to a map on the whole tensor product.

6.1.9 Lemma. Contraction commutes with covariant differentiation.
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Proof. We compute

c(∇ek
(ω1 ⊗ ω2 ⊗ ω3 ⊗ ω4))

=c(∇ek
ω1 ⊗ ω2 ⊗ ω3 ⊗ ω4 + ω1 ⊗∇ek

ω2 ⊗ ω3 ⊗ ω4

+ ω1 ⊗ ω2 ⊗∇ek
ω3 ⊗ ω4 + ω1 ⊗ ω2 ⊗ ω3 ⊗∇ek

ω4)

=g(ω2, ω3)∇ek
ω1 ⊗ ω4 + g(ω2, ω3)ω1 ⊗∇ek

ω4

+ g(∇ek
ω2, ω3)ω1 ⊗ ω4 + g(ω2,∇ek

ω3)ω1 ⊗ ω4

=g(ω2, ω3)∇ek
ω1 ⊗ ω4 + g(ω2, ω3)ω1 ⊗∇ek

ω4

+ ek{g(ω2, ω3)}ω1 ⊗ ω4

=∇ek
c(ω1 ⊗ ω2 ⊗ ω3 ⊗ ω4). �

6.1.10 Notational conventions. Let g be a rank 2 C-φ type IP metric. Let R be

the curvature tensor of g. Suppose there exist C 6= 0 and φ an unipotent (of order

2) isometry of Rp,q so that R = RC,φ. Let indices i, j etc. range from 1 through

m = p+ q. Let the roman indices a, b, etc. range from 1 through r+. Let the greek

indices α, β range from r+ + 1 through m. We use Lemma 6.1.2 to choose a local

frame e diagonalizing φ so that φea = ea and that φeα = −eα. Let φij := g(φei, ej).

Let φij;k, Rijk`, and Rijk`;n be the components of ∇φ, R, and ∇R. Let F± be the

distributions defined by the ±1 eigenspaces of φ. Then {ea} span F+ and {eα} span

F−.

We adopt arguments of Gilkey, Leahy and Sadofsky [48] to establish the follow-

ing technical lemma which we shall need later.

6.1.11 Lemma. Let m ≥ 4. Let g be a C-φ type IP metric of rank 2. Then:

(1) Rijk`;n = C;n(φi`φjk − φikφj`) + C(φi`;nφjk + φi`φjk;n − φik;nφj` − φikφj`;n).

(2) We have φij;k = φji;k for any i, j, and k.

(3) We have φab;i = 0 and φαβ;i = 0 for any a, b, α, β, and i.
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(4) If i, j, and k are distinct, then φij;k = φik;j.

(5) If a 6= b, then φaα;b = 0; if α 6= β, then φaα;β = 0.

(6) The Christoffel symbols Γiaα = 1
2
φaα;i.

(7) The distributions F± are integrable.

(8) If there exists α 6= β, then

C;a = −C{εβφβa;β + εαφαa;α} and C;β = −Cεaφaβ;a.

(9) If there exists a 6= b, then

C;α = C{εaφαa;a + εbφαb;b} and C;b = Cεαφαb;α.

(10) If r− ≥ 3, then C;α = 0. If r+ ≥ 3, then C;a = 0.

(11) Either r+ ≤ 1 or r− ≤ 1.

Proof. We covariantly differentiate the identity Rijk` = C(φi`φjk − φikφj`) to see

Rijk`;n =∇en
(C(φi`φjk − φikφj`))

=C;n(φi`φjk − φikφj`) + C(φi`;nφjk + φi`φjk;n − φik;nφj` − φikφj`;n).

Assertion (1) follows. Since φ ∈ O(p, q) with φ2 = id, φ is necessarily self-adjoint so

assertion (2) holds. To prove assertion (3), we consider the 4 cotensor Φ ∈ ⊗4(T ∗M)

defined by Φ(x, y, z, w) := g(φx, y)g(φz, w) and compute:

Φ =
∑

i,j,k,` φijφk`e
i ⊗ ej ⊗ ek ⊗ e`

cΦ =
∑

i,`

∑
j,k g

jkφijφk`e
j ⊗ e`

=
∑

i,`

∑
j,k εjεiδjkδiδijεkδkδk`e

i ⊗ e`

=
∑

i,j εiδije
i ⊗ ej

=
∑

i,j gije
i ⊗ ej .

Thus cΦ = g. Since ∇g = 0, we have ∇en
cΦ = ∇en

g = 0 and hence by Lemma

6.1.9 we see that c∇en
Φ = 0. We have

∇en
Φ = (φij;nφk` + φijφk`;n)ei ⊗ ej ⊗ ek ⊗ e`.
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Since φij = 0 for i 6= j and φk` = 0 for k 6= `, we use the relation c∇en
Φ = 0 to

see
0 =ε`φi`;nφ`` + εiφiiφi`;n

=ε`ε`δ`φi`;n + εiεiδiφi`;n

=(δ` + δi)φi`;n.

Assertion (3) now follows. We use the second Bianchi identity:

Rijk`;n +Rij`n;k +Rijnk;` = 0

to prove assertion (4). Let {i, j, `, n} be distinct indices, this is possible as m ≥ 4.

We use assertion (1) and the fact that φi` = φij = φj` = 0 to compute:

Rijj`;n =C;n(φi`φjj − φijφj`)

+ C(φi`;nφjj + φi`φjj;n − φij;nφj` − φijφj`;n)

=Cφi`;nφjj .

Rij`j;n =−Rijj`;n = −Cφi`;nφjj .

Rijk`;j =C;j(φi`φjk − φjkφi`)

+ C(φi`;jφjk + φi`φjk;j − φjk;jφi` − φjkφi`;j)

=0.

We relabel the indices at this point. Let {i, j, k} be distinct. Since m ≥ 4, we may

choose ` so {i, j, k, `} are distinct indices. We now use the second Bianchi identity

with (i, j, k, `, n) = (i, `, `, j, k) to see

0 = Ri``j;k +Ri`jk;` +Ri`k`;j = C(φij;k − φik;j)φ``.

Thus φij;k = φik;j and assertion (4) holds. We use assertions (3) and (4) to see that

if a 6= b, then

φaα;b = φab;α = 0.
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Similarly, if α 6= β, we may use assertions (2), (3), and (4) to compute:

φaα;β = φαa;β = φαβ;a = 0.

Assertion (5) follows. We prove assertion (6) by computing:

φij;k :=(∇ek
φ)(ei, ej) = ekφ(ei, ej)− φ(∇ek

ei, ej)− φ(ei,∇ek
ej)

=−
∑

` Γki
`φ(e`, ej)−

∑
` Γkj

`φ(ei, e`)

=−
∑

` Γki
jδjg`j −

∑
` Γkj

`δig`i

=− Γkijδj − Γkjiδi

=Γkij(δi − δj).

It now follows that φaα;k = Γkaα(δa − δα) = 2Γkaα, thus Γkaα = 1
2φaα;k. Note

this also provides another check that φab;k = 0 and φαβ;k = 0 as δi − δj = 0 if

(i, j) = (a, b) or (i, j) = (α, β).

We now prove assertion (7), we set Π± := 1
2 (1± φ) to be orthogonal projection

on F±. To show F+ is integrable, we must show g([ea, eb], eα) = 0. We compute:

g([ea, eb], eα) = g(∇ea
eb −∇eb

ea, eα) = Γabα − Γbaα = 1
2 (φbα;a − φaα;b).

This vanishes trivially if a = b; we use assertion (5) to see this still vanishes if

a 6= b. The argument is the same to show F− is integrable where we also use the

symmetry given in assertion (2).

We now prove assertion (8). Let α 6= β. We use assertions (1) and (3) to
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compute

Rαββα;a =C;a(φααφββ − φαβφβα)

+ C(φαα;aφββ + φααφββ;a − φαβ;aφαβ − φαβφβα;a)

=C;aφααφββ = εαεβC;a.

Rαβαa;β =C;β(φαaφβα − φααφβa)

+ C(φαa;βφβα + φαaφβα;β − φαα;βφβa − φααφβa;β)

=− Cφααφβa,β = εαCφβa;β .

Rαβaβ;α =C;α(φαβφβa − φαaφββ)

+ C(φαβ;αφβa + φαβφβa;α − φαa;αφββ − φαaφββ;α)

=− Cφββφαa,α = εβCφαa;α.

Rαaβa;α =C;α(φαaφaβ − φαβφaa)

+ C(φαa;αφaβ + φαaφaβ;α − φαβ;αφaa − φαβφaa;α)

=0.

We now use the second Bianchi identity with (i, j, k, `, n) = (α, β, β, α, a) to see

0 = Rαββα;a +Rαβαa;β +Rαβaβ;α = εαεβC;a + εαCφβa;β + εβCφαa;α.

Thus C;a = −C{εβφβa;β + εαφαa;α}. We relabel the indices to see

Rαaaα;β = εαεaC;β and Rαaαβ;a = εαCφaβ;a.

We now use the second Bianchi identity with (i, j, k, `, n) = (α, a, a, α, β) to see

0 = Rαaaα;β +Rαaαβ;a +Rαaβa;α = εαεaC;β + εαCφaβ;a.

Assertion (8) now follows. We replace φ by −φ and interchange the roles of the

greek and roman indices to derive assertion (9) from assertion (8).
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To prove assertion (10), we suppose r− ≥ 3. Choose α, β, and γ distinct, we

compute:

Rγββγ;α =C;α(φγγφββ − φγβφβγ)

+ C(φγγ;αφββ + φγγφββ;α − φγβ;αφβγ − φγβφβγ;a)

=C;αφγγφββ = εγεβC;α.

Rγβγα;β =C;β(φγαφβγ − φγγφβα)

+ C(φγα;βφβγ + φγαφβγ;β − φγγ;βφβα − φγγφβα;β)

=0.

Rγβαβ;γ =C;γ(φγβφβα − φγαφβα)

+ C(φγβ;γφβα + φγβφβα;γ − φγα;γφβα − φγαφβα;γ)

=0.

We now use the second Bianchi identity with (i, j, k, `, n) = (γ, β, β, γ, α) to see

0 = Rγββγ;α +Rγβγα;β +Rγβαβ;γ = εγεβC;α.

Thus C;α = 0. Similarly if r+ ≥ 3, then we have C;a = 0.

To prove assertion (11), we suppose r+ ≥ 2 and r− ≥ 2. We show ∇C = 0

and ∇φ = 0 as follows. For fixed a, since r− ≥ 2, we may choose α 6= β. We use

assertions (2), (4), and (8) to see that

C;a = −C{εβφβa;β + εαφαa;α} = −C{εβφββ;a + εαφαα;a} = 0.

Likewise, for fixed α, since r+ ≥ 2, we may choose a 6= b. We use assertions (2), (4),

and (9) to see that C;α = 0. Thus ∇C = 0. Moreover, we use assertions (3) and (5)

to see that φij;k = 0 for all i, j, k. Thus ∇φ = 0. Consequently, we use assertion (6)

to see that Γiaα = 1
2φaα;i = 0. Thus the distribution F+ is parallel and

0 = g(R(eα, ea)ea, eα) = Cεaεαδaδα = −Cεaεα.
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So C = 0 which is false. This completes the proof. �

6.1.12 Proof of Theorem E. Assume m ≥ 10. Let (M, gM) be an IP pseudo-

Riemannian manifold. Suppose the curvature tensor R at P ∈ M is of C-φ type,

we apply Lemma 6.1.11 to see that r+(φ) ≤ 1 or r−(φ) ≤ 1. �

Theorem 1.3.3 constructed warped product metrics ds2M = dt2 + f(t)ds2N on

the product between an interval I ⊂ R and a Riemannian manifold N of constant

sectional curvature K which are IP. Furthermore, the warping function f(t) takes

the form f(t) = Kt2 + At + B, where A,B are auxilliary constants. Notice this

construction corresponds to the case r+ = m − 1 and r− = 1 in Theorem E.

Let R be the associated algebraic curvature tensor; R(π) has constant eigenvalues

{0,±
√
−1C} where C = 4KB−A2

4f2 . If 4KB − A2 = 0, then this metric is flat.

We therefore assume that 4KB − A2 6= 0. We now generalize the construction

of Gilkey, Leahy, and Sadofsky, and of Ivanov and Petrova to higher signatures.

Topological suspension is a way of increasing the dimension. We introduce an

analogous construction in the next section.

§6.2 Constructing Rank 2 IP Metrics Via Suspension

In §6.1, we have shown that RC,φ is not geometrically realizable by a C-φ type

IP metric if dimE+ > 1 and if dimE− > 1. Conversely, in Theorem F we use a

warped product construction to give a C-φ type geometric realization of RC,φ by

an IP metric if dimE+ ≤ 1 or if dimE− ≤ 1. For clarity, we change our notation

slightly at this point:

6.2.1 Definition. Let x = (x1, ..., xp, xp+1, ..., xp+q) be the usual coordinate on

Rp,q so that the standard metric takes the form given in §1.1.3:

g(p,q)(x, y) = −
∑p

i=1 xiyi +
∑p+q

i=p+1 xiyi.
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Let

(6.2.1.a) Σεg(p,q)((t, x), (t̃, x̃)) := ε · tt̃+ g(p,q)(x, x̃) where ε = ±1

be the suspension of the metric g(p,q). We let ΣεR
p,q be Rp+q+1 with this metric.

Note that Σ+g(p,q) is a metric of signature (p, q + 1), and that Σ−g(p,q) is a met-

ric of signature (p + 1, q). The first coordinate plays a distinguished role in our

investigations. Let φ be an unipotent (of order 2) isometry of Rp,q. We set

(6.2.1.b) Σε(φ) :=
(
ε 0
0 φ

)
.

For C 6= 0, we have defined RC,φ(x, y)z := C{g(φ(y), z)φ(x)− g(φ(x), z)φ(y)}. We

now define

(6.2.1.c) ΣεRC,φ := RC,Σε(φ).

By Theorem D, ΣεRC,φ are IP algebraic curvature tensors. Similarly, we suspend

a metric on a manifold N(p, q) using a warped product construction.

6.2.2 Definition. Let ds2N(p,q) be a metric of constant sectional curvature K

on a manifold N(p, q) of signature (p, q). Let fε(t) be nonzero smooth real-valued

functions defined on a connected interval I ⊂ R. Let

(6.2.2.a) Σfε
ε ds

2
N(p,q) := εdt2 + fε(t)ds2N(p,q)

define warped product metrics of signatures (p, q+ 1) and (p+ 1, q) on I ×N(p, q).

Let N(p, q) be a manifold of signature (p, q) which has constant sectional cur-

vature K. We now determine the necessary and sufficient condition of the warping

functions fε(t) so that the resulting suspended metrics are nonconstant sectional
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curvature IP metrics of rank 2. Before beginning the proof of Theorem F, we es-

tablish a technical lemma. Fix a point P of N(p, q). We choose local coordinates

x = (x1, ..., xp+q) on N(p, q) so that

gii(P ) = εi = ±1, gij(P ) = 0 for i 6= j, and gij/k(P ) = 0.

We let indices i, j, k, ` range over 1 through p+ q and index the coordinate frames

{∂i := ∂
∂xi } and {dxi} for the tangent and cotangent bundles of N(p, q). Let

∂0 := ∂
∂t . These are not orthonormal frames. Let g,∇,Γ and R be defined by the

metric on N(p, q).

6.2.3 Lemma. Let fε(t) := e2hε(t). Let εg, ε∇, εΓ and εR be defined by the

suspended metrics Σfε
ε ds

2
N(p,q) on I ×N(p, q) given in equation (6.2.2.a). We have

(1) εR(∂i, ∂j, ∂k, ∂`)(t, P ) = e2hε{K − εḣ2
εe

2hε}εiεj

(
δi`δjk − δikδj`

)
.

(2) εR(∂i, ∂0, ∂0, ∂j)(t, P ) = −e2hε{ḧε + ḣ2
ε}εiδij.

(3) The curves t 7→ (t, x) are unit speed geodesics.

Proof. We have R(∂i, ∂j, ∂k, ∂`)(t, P ) = Kεiεj{δi`δjk − δikδj`}. Recall that

Γuvw = 1
2 (∂ugvw + ∂vguw − ∂wguv) and Γuv

x = gxy · Γuvy

where these indices range between 0 and p+ q. We use these identities to see that

for i, j, k, ` ranging over 1 through p+ q

(1) We have εΓijk = Γijk and εΓij
k = Γij

k.

(2) We have εΓijk(t, P ) = Γijk(t, P ) = 0 and εΓij
k(t, P ) = Γij

k(t, P ) = 0.

(3) We have εΓi0j(t, P ) = −εΓij0(t, P ) = ḣεe
2hεεiδij .

(4) We have εΓjk
0(t, P ) = εg0u · εΓjku(t, P ) = −εḣεe

2hεεjδjk.
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(5) We have εΓi0
`(t, P ) = εg`u · εΓi0u(t, P ) = ḣεε`εiδi`. We use these relations to

prove assertion (1) by computing:

εR(∂i, ∂j, ∂k, ∂`)(t, P )

= {εg((ε∇∂i

ε∇∂j
− ε∇∂j

ε∇∂i
)∂k, ∂`)}(t, P )

= {εg(ε∇∂i

(
εΓjk

u · ∂u

)
, ∂`)− εg(ε∇∂j

(
εΓik

u · ∂u

)
, ∂`)}(t, P )

= {(∂i
εΓjk

n − ∂j
εΓik

n + εΓjk
0 · εΓi0

n − εΓik
0 · εΓj0

n) · εg(∂n, ∂`)}(t, P )

= {(∂iΓjk
n − ∂jΓik

n + εΓjk
0 · εΓi0

n − εΓik
0 · εΓj0

n) · εg(∂n, ∂`)}(t, P )

= {e2hε(Rijk` + ε`(εΓjk
0 · εΓi0

` − εΓik
0 · εΓj0

`))}(t, P )

= {e2hε(Rijk` + ε`[(−εḣ2
ε)εjδjke

2hεε`εiδi` − (−εḣ2
ε)εiδike

2hεε`εjδj`])}(t, P )

= {e2hε(K − εḣ2
εe

2hε)εiεj(δi`δjk − δikδj`)}(t, P ).

Since εg(ε∇∂i
∂0, ∂0) = 1

2∂i
εg(∂0, ∂0) = 0 and since

εΓi0j(t, P ) = εg(ε∇∂i
∂0, ∂j)(t, P ) = {ḣεe

2hεεiδij}(t, P ),

we have: ε∇∂i
∂0(t, P ) = ḣε∂i(t, P ). We prove assertion (2) by computing:

εR(∂i, ∂0, ∂0, ∂j)(t, P )

= {εg((ε∇∂i

ε∇∂0∂0 − ε∇∂0
ε∇∂i

∂0), ∂j)}(t, P )

= −{εg(ε∇∂0
ε∇∂i

∂0, ∂j)}(t, P )

= −{εg(ε∇∂0(ḣε∂i), ∂j)}(t, P )

= −{εg(ḧε∂i + ḣε
ε∇∂0∂i, ∂j)}(t, P )

= {−(ḧε + ḣ2
ε)

εg(∂i, ∂j)}(t, P )

= −{e2hε(ḧε + ḣ2
ε)}εiδij(t, P ).
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We prove assertion (3) by computing:

εg(ε∇∂0∂0, ∂0) = 1
2∂0

εg(∂0, ∂0) = 0;

εg(ε∇∂0∂0, ∂i) = −εg(∂0,
ε∇∂0∂i)

= −εg(∂0,
ε∇∂i

∂0)

= −1
2∂i

εg(∂0, ∂0) = 0. �

6.2.4 Proof of Theorem F. We begin with normalizing the coordinate frame

{∂0 = ∂
∂t , ∂i = ∂

∂xi } by setting e0 := ∂0 and ei := e−hε∂i for i ≥ 1. Since fε is a

nonzero smooth function defined on a connected interval I, by replacing gN by −gN

if necessary, we may assume fε > 0 on I; so we may set fε(t) = e2hε(t). Thus we

have

ḣε = 1
2

d

dt
(ln fε) =

ḟε

2fε
and ḧε =

2f̈εfε − 2ḟ2
ε

4f2
ε

.

We use assertions (1) and (2) of Lemma 6.2.3 and normalize the bases to see that

(6.2.4.a)

εR(ei, ej, ej , ei)(t, P ) = (Ke−2hε − εḣ2
ε)εiεj

= { K
fε
− ε

(
ḟε

2fε

)2

}εiεj

=
4Kfε − εḟ2

ε

4f2
ε

εiεj ;

(6.2.4.b)

εR(ei, e0, e0, ei)(t, P ) = −(ḧε + ḣ2
ε)εiε

= −{2f̈εfε − 2ḟ2
ε

4f2
ε

+
(
ḟε

2fε

)2

}εiε

= −2f̈εfε − ḟ2
ε

4f2
ε

εiε;

(6.2.4.c) εR(ei, ej, ek, e`)(t, P ) = 0 for (i, j) 6= (k, `) and (i, j) 6= (`, k).
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Assume fε(t) = εKt2 + At+ B for 4KB − εA2 6= 0. We use equation (6.2.4.a)

to see that

(6.2.4.d)

εR(ei, ej , ej, ei)(t, P ) =
4K(εKt2 +At+B)− ε(2εKt+ A)2

4f2
ε

εiεj

=
4KB − εA2

4f2
ε

εiεj .

We use equation (6.2.4.b) to see that

(6.2.4.e)

εR(ei, e0, e0, ei)(t, P ) = −2(2εK)(εKt2 +At+B)− (2εKt+A)2

4f2
ε

εiε

= −4KB − εA2

4f2
ε

εiε.

Let Cε := 4KB−εA2

4f2
ε

. Let

Σεφ(eu) :=
{ −e0 if u = 0,
eu if 1 ≤ u ≤ m.

We use equation (6.1.4) to see that εR = RCε,Σε(φ) are rank 2 IP algebraic curvature

tensors and that the suspended metrics Σfε
ε ds

2
N(p,q) are rank 2 IP metrics. Moreover,

equations (6.2.4.d) and (6.2.4.e) imply the suspended metrics do not have constant

sectional curvature.

Conversely, we assume the suspended metrics Σfε
ε ds

2
N(p,q) are IP. We use equa-

tions (6.2.4.a) and (6.2.4.b) to see that

4Kfε − εḟ2
ε

4f2
ε

εiεj = σ({−2f̈εfε − εḟ2
ε

4f2
ε

}εiε) where σ = ±1.

Case 1. Suppose σ = 1. Then

4Kfε − εḟ2
ε

4f2
ε

εiεj = −2f̈εfε − εḟ2
ε

4f2
ε

εiε.

We compute the sectional curvature of the 2-plane π1 := Span{ei, ej} to be

εR(ei, ej , ej, ei)
g(ei, ei)g(ej, ej)− g(ei, ej)2

=
4Kfε − εḟ2

ε

4f2
ε

.
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We compute the sectional curvature of the 2-plane π2 := Span{ei, e0} to be

εR(ei, e0, e0, ei)
g(ei, ei)g(e0, e0)− g(ei, e0)2

= −2f̈εfε − εḟ2
ε

4f2
ε

.

Thus the metrics give constant sectional curvature.

Case 2. Suppose σ = −1. Then

4Kfε − εḟ2
ε

4f2
ε

εiεj =
2f̈εfε − εḟ2

ε

4f2
ε

εiε.

Since the nonzero eigenvalues of εR(ei, ej) and εR(ei, e0) are identical, we must have

f̈ε = 2εK; this implies fε(t) = εKt2+At+B. Furthermore, we compute the nonzero

eigenvalues of εR(π) are ε
√
−1Cε where Cε = 4KB−εA2

4f2
ε

. Thus if Σfε
ε ds

2
N(p,q) has

rank 2, then 4KB − εA2 6= 0; this proves Theorem F. �

§6.3 Proof of Theorem G

In this section, we complete the proof of Theorem G. We begin with some

notational conventions and a technical lemma. Let φ be an unipotent (of order

2) isometry of Rp,q. We adopt the notational conventions established in §6.1.10.

Let y := (y1, ..., ym−1) be local coordinates on a leaf of the foliation F−. We use

T (t, y) := expt(te1(y)) to define local coordinates on Mm. We adopt arguments of

Gilkey, Leahy and Sadofsky [48] to prove

6.3.1 Lemma. Let m ≥ 4. Let g be an IP metric of rank 2 which is C-φ type

with φ an unipotent (of order 2) isometry. Let R := RC,φ. Assume r+ = 1.

(1) For any α, C;α = 0, C;1 = −2Cεαφ1α;α, and Γα1β = −1
4
εαδαβC

−1C;1.

(2) For fixed y0, the curves t 7→ T (t, y0) are unit speed geodesics in Mm which are

leaves of the foliation F+.

(3) For fixed t0, the hypersurfaces T (t0, y) are leaves of the foliation F− and inherit

metrics of constant sectional curvature.
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(4) Locally the metric on Mm is given by ds2 = ε1dt
2 + f(t)ds2K where f(t) is a

nonzero smooth function defined on a connected open interval I ⊂ R and ds2K

is a metric of constant sectional curvature K.

Proof. Since r+ = 1 and m ≥ 4, a = 1 and r− ≥ 3. We use Lemma 6.1.11 (10) to

see that C;α = 0. Since r− ≥ 4, we may choose α, β, γ distinct, and we use Lemma

6.1.11 (8) to see that

C;1 = −C{εβφβ1;β + εαφα1;α} = −C{εγφγ1;γ + εαφα1;α}, so εβφβ1;β = εγφγ1;γ .

Thus C;1 = −2Cεαφα1;α. We use Lemma 6.1.11 (2), (5), and (6) to see that

Γα1β = 1
2φ1β;α = 1

2δαβφ1α;α = 1
2φα1;α = −1

4εαδαβC
−1C;1.

Assertion (1) follows. Clearly Γ111 = 0 and by Lemma 6.1.11 (6), (8), and (10) we

have

Γ11α = 1
2φ1α;1 = Cε1C

−1C;α = 0.

This shows the integral curves for e1 are unit speed geodesics; assertion (2) now

follows. We now compute:

∂tg(∂t, ∂
y
α) = g(∂t,∇∂t

∂y
α) + g(∂y

α,∇∂t
∂t) = g(∂t,∇∂t

∂y
α) = 1

2
∂y

αg(∂t, ∂t) = 0.

Thus ∂t ⊥ ∂y
α. this shows ∂y

α span the perpendicular distribution F− and the

hypersurfaces T (t0, y) are leaves of the foliation F−. We need some additional

notation at this point. Let X, Y be vector fields on the leaves of the foliation F−.

Let L(X, Y ) := ∇XY − Π−∇XY be the normal component of ∇XY . We have

L(eα, eβ) = g(L(eα, eβ), e1)e1 = ε1Γαβ1e1. Let R− be the associated curvature
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tensor of the induced metric on the leaves of F−. We use the Gauss-Codazzi equation

to see that

R−(eα, eβ , eγ , eσ) =R(eα, eβ, eγ , eσ) + g(L(eα, eγ), L(eβ, eσ))

− g(L(eα, eσ), L(eβ, eγ))

=R(eα, eβ, eγ , eσ)− ε1(Γβγ1Γα1σ − Γαγ1Γβ1σ).

We use assertion (1) to see Γβγ1Γα1σ − Γαγ1Γβ1σ = 0; assertion (3) now follows.

It remains to show that the metric g is locally a warped product. We express

∂y
α =

∑
γ aαγeγ . We compute:

g(∇∂t
∂y

α, ∂
y
β) =g(∇∂y

α
∂t, ∂

y
β)

=g(
∑

γ aαγ∇eγ
∂t, ∂

y
β)

=
∑

γ aαγg(∇eγ
∂t,

∑
σ aβσeσ)

=
∑

γ,σ aαγaβσg(∇eγ
∂t, eσ)

=
∑

γ,σ aαγaβσΓγ1σ

=− 1
4C

−1C;1(
∑

γ,σ εγδγαaαγaβσ)

=− 1
4C

−1C;1(
∑

γ,σ εγaαγaβγ)

=− 1
4C

−1C;1gαβ.

On the other hand, we have

∂tg(∂y
α, ∂

y
β) =2g(∇∂y

α
∂t, ∂

y
β)

=2Γα1β = −1
2εαδαβC

−1C;1

=− 1
2
C−1C;1gαβ.

Since C−1C;1 depends only on the parameter t, the metrics g is locally given by

ds2 = ε1dt
2 + f(t)ds2K. �

6.3.2 Proof of Theorem G (2). We now use steps 1 through 7 outlined in §1.4.2

to complete the proof. �
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§6.4 The Orthogonal Equivalence of the Curvature Tensors RC,φ

We conclude this chapter by giving necessary and sufficient conditions in Theo-

rem 6.4.5 that RC,φ and RC̃,φ̃ are orthogonally equivalent. We first introduce some

additional notation.

6.4.1 Definition. If ψ is an isometry of Rp,q and if R ∈ ⊗4(Rp,q) , then we define

the pull-back 4-tensor ψ∗R by

(ψ∗R)(x, y, z, w) := R(ψ(x), ψ(y), ψ(z), ψ(w)).

Note that R is an algebraic curvature tensor if and only if ψ∗R is an algebraic

curvature tensor; R is IP if and only if ψ∗R is IP. This gives the natural action of

the isometry group O(p, q) on these tensors. We say that R and R̃ are orthogonally

equivalent if and only if there exists ψ ∈ O(p, q) so ψ∗R = R̃.

Both the Ricci operator and the Jacobi operator will play an important role in

this section. We recall their definitions briefly.

6.4.2 Definition. Let ρ be the Ricci tensor defined by an algebraic curvature

tensor R. We have:

ρ(x, y) := Tr(z 7→ R(z, x)y) = gijR(ei, x, y, ej).

This tensor is symmetric. In the Riemannian setting, ρ(x, x) is the average

sectional curvature of all the 2-planes containing x. Let ρ̃ be the associated endo-

morphism:

ρ̃(x) := gijρ(x, ei)ej .

This is characterized by the identity:

g(ρ̃(x), y) := ρ(x, y).

The eigenvalues of ρ̃ are orthogonal invariants.
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We recall from §1.5.1 the definition of the Jacobi operator J(x) : y 7→ R(y, x)x.

We also recall that g(ei, ei) = εiei and φ(ei) = δiei where εi = ±1, δi = ±1. We

omit the proof of the following lemma as it is an immediate algebraic consequence

of Lemma 6.1.4 and the above definitions.

6.4.3 Lemma. Let {ei} be a normalized orthonormal basis. Let R = RC,φ define

ρ, ρ̃, and J .

(1) If i 6= j, then ρ(ei, ej) = 0. We have ρ(ei, ei) = Cεiδi
∑

j 6=i δj.

(2) If δi = 1, then ρ̃(ei) = C(r+ − 1− r−)ei.

(3) If δi = −1, then ρ̃(ei) = C(r− − 1− r+)ei.

(4) If i 6= j, then J(ei)ej = Cεiδiδjej. We have J(ei)ei = 0.

Fix an idempotent isometry φ of Rp,q. Let

G := {x ∈ Rp,q : |x|2 = 1 an J(x) has ignvalus ± C on x⊥},

S(E±) := {x ∈ E± : |x|2 = 1} and N (E±) := {x ∈ E± : |x|2 = 0}.

We show the space G is homotopy equivalent to Sp+−1
.
t Sp−−1. Since the homo-

topy type of G is an orthogonal invariant, the unordered pair (p+, p−) is also an

orthogonal invariant of RC,φ.

6.4.4 Lemma.

(1) The space G is homeomorphic to S(E+)×N (E−)
.
t N (E+)× S(E−).

(2) The space N (E±) is contractible.

(3) The space S(E+) is homeomorphic to Sp+−1 ×Rq+ .

(4) The space S(E−) is homeomorphic to Sp−−1 ×Rq−.

(5) The space G is homotopy equivalent to Sp+−1
.
t Sp−−1.

Proof. We decompose Rp,q = E+ ⊕ E−, and we identify Rp,q with the Cartesian

product E+×E−. We first show G ⊆ S(E+)×N (E−)
.
t N (E+)×S(E−). Let x ∈ G.

Decompose x = x+ + x− for x± ∈ E±. Since |x|2 = 1, we have |x+|2 + |x−|2 = 1.
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To show x ∈ S(E+)×N (E−)
.
t N (E+)×S(E−), it suffices to show either x+ or x−

is a null vector. Suppose the contrary. We choose a normalized orthonormal basis

{ei} for Rp,q so that x+ = a1e1 and that x− = a2e2, where a1 6= 0 and a2 6= 0.

Then we have:

(6.4.4.a) 1 = |x+|2 + |x−|2 = a2
1ε1 + a2

2ε2.

We compute: J(x)e3 = C{g(φx, x)φe3−g(φe3, x)φx} = C{δ3(a2
1ε1−a2

2ε2)e3}. Since

e3 ⊥ x and since x ∈ G, we have:

(6.4.4.b) a2
1ε1 − a2

2ε2 = ±1.

If a2
1ε1 + a2

2ε2 = 1 and a2
1ε1 − a2

2ε2 = −1, then we add equations (6.4.4.a) and

(6.4.4.b) to see that 2a2
1ε1 = 0, so a1 = 0 which is false. If a2

1ε1 + a2
2ε2 = 1 and

a2
1ε1 − a2

2ε2 = 1, then we subtract equations (6.4.4.a) and (6.4.4.b) to see that

2a2
2ε2 = 0, so a2 = 0 which is false. Thus G ⊆ S(E+)×N (E−)

.
t N (E+)×S(E−).

Next, we show G ⊇ S(E+)×N (E−)
.
t N (E+)×S(E−). Suppose x = x+ + x−

where |x+|2 = 1 and x− is a null vector; the other case is similar as one can replace

φ by −φ to interchange the roles of r+ and r−. We choose a normalized orthonormal

basis {ei} for Rp,q with ε1 = 1, ε2 = 1, ε3 = −1; δ1 = 1, δ2 = −1 and δ3 = −1 so

that x = e1 +a(e2 +e3) for some constant a. We complete the proof of assertion (1)

by showing x ∈ G. If i > 3, then we use Lemma 6.4.3 to see that J(x)ei = Cδiei.

Hence we must show the eigenvalues of J(x) on the three dimensional space spanned

by {e1, e2, e3} are {0,−C,−C}. We have from the definition that

J(x)y =R(y, x)x = Cg(φ(x), x)φ(y)− Cg(φ(y), x)φ(x)

=Cg(e1 − a(e2 + e3), e1 + a(e2 + e3))φ(y)− Cg(φ(y), x)φ(x)

=Cφ(y)− Cg(φ(y), e1 + ae2 + ae3)(e1 − a(e2 + e3)).



105

We compute the action of J(x) to be:

J(x)x = 0,

J(x)(e2 + e3) = C(φ(e2) + φ(e3))

− Cg(φ(e2) + φ(e3), e1 + ae2 + ae3)(e1 − ae2 − ae3)

= −C{(e2 + e3)− g(e2 + e3, e1 + ae2 + ae3)(e1 − ae2 − ae3)}

= −C(e2 + e3),

J(x)(e2 − e3) = C(φ(e2)− φ(e3))

− Cg(φ(e2)− φ(e3), e1 + ae2 + ae3)(e1 − ae2 − ae3)

= C{e3 − e2)− g(e3 − e2, e1 + ae2 + ae3)(e1 − ae2 − ae3)}

= C{e3 − e2) + 2a(e1 − a(e2 + e3)}

= C{e3 − e2) + 2a(e1 + a(e2 + e3)− 4a2(e2 + e3)}

= C{2ax− 4a2(e2 + e3)− (e2 − e3)}.

Thus J(x) is represented by an upper triangular matrix relative to this basis:

(6.4.4.c) J(x) =


 0 0 0

0 −C 0
2aC −4a2C −C


 .

We use matrix (6.4.4.c) to compute the characteristic polynomial:

(6.4.4.d) det(λ− J(x)) = det


 λ 0 0

0 λ+ C 0
−2aC 4a2C λ+ C


 = λ(λ+ C)2.

We use equation (6.4.4.d) to see the eigenvalues of J(x) are {0,−C,−C}. This

completes the proof of assertion (1).

Let I := [0, 1]. We prove assertion (2) by constructing the deformation retract

H0 : N (E±)× I → N (E±) by H0(x, t) := (1− t)x; geometrically speaking, we are
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sliding each null vector along the null cone to the origin. We prove assertions (3)

and (4) by constructing a homeomorphism H± : Sp±−1 ×Rq± → S(E±) by

H±(u, v) := (
√

1 + |v|2u, v).

The final assertion now follows. �

We can now characterize the curvature tensors RC,φ up to orthogonal equiva-

lence in the following statement:

6.4.5 Theorem. The following assertions are equivalent:

(1) RC,φ and RC̃,φ̃ are orthogonally equivalent.

(2) C = C̃ and φ is orthogonally equivalent to ±φ̃.

Proof. Up to orthogonal equivalence, we see that φ is determined by the 4-tuple

(p+, q+, p−, q−); −φ corresponds to (p−, q−, p+, q+) since we must interchange the

roles of E+ and E−. We shall need to take this Z2 action into account. It is clear

that assertion (2) implies assertion (1). To show that assertion (1) implies assertion

(2), we must show that C is determined by orthogonal invariants of RC,φ and that

the tuple (p+, q+, p−, q−) is also determined by orthogonal invariants of RC,φ up to

the Z2 action described above.

By Lemma 6.4.3, ρ̃C,φ has eigenvalues λ± := C{r± − 1 − r∓} , where λ± has

multiplicity r±. We distinguish two cases.

Case 1. Suppose the Ricci operator has two distinct eigenvalues λ±. This implies

that r+ 6= r−. By replacing φ by −φ if necessary, we may assume r+ > r−. Thus

λ+ is the eigenvalue with the greater multiplicity and is an orthogonal invariant.

Since E± can be identified with the eigenspaces of ρ̃C,φ, the signature of the metric

g restricted to E± is an orthogonal invariant. Thus the 4-tuple (p+, q+, p−, q−) is
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an orthogonal invariant. Finally, note that λ+ + λ− = −2C, so C is an orthogonal

invariant.

Case 2. Suppose the Ricci operator has only one nonzero eigenvalue. This implies

that r+ = r−. So r± = m
2

. We can not eliminate the Z2 ambiguity at this point.

Note that λ+ = λ− = −C, so C is an orthogonal invariant. We apply Lemma 6.4.4

to determine the unordered pair (p+, p−). And we use the relations q+ = r+ − p+,

p− = q − p+, and q− = p− q+ to fill in the rest of the 4-tuple. �
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APPENDIX A

SOME COMBINATORIAL LEMMAS

A.1 Lemma. Given 2-adic expansions a =
q∑

i=0

ai2i and b =
q∑

i=0

bi2i. Then

(
a

b

)
≡

q∏
i=0

(
ai

bi

)
mod 2.

Proof. We define

(
0
0

)
:= 1,

(
0
1

)
:= 0,

(
1
0

)
:= 1, and

(
1
1

)
:= 1.

Since in the ring Z2[x], (1 + x)2 ≡ 1 + x2 mod 2, using induction, we see that

(1 + x)2
j ≡ 1 + x2j

mod 2. Thus,

(1 + x)a ≡ (1 + x)Σai2
i ≡

q∏
i=0

(1 + x2i

)ai ≡
q∏

i=0

[∑ (
ai

t

)
xt2i

]
mod 2

Notice the coefficient of the term xb in this product is precisely given by
q∏

i=0

(
ai

bi

)
.

Our claim now follows. �

A.2 Lemma. In the cohomology ring

H∗(Gr2(Rq);Z2) ∼= Z2[w1, w2]/w⊥i = 0, for i ≥ q − 1,

we have w⊥q−1 = wq−1
1 if and only if q is a power of 2.

Proof. Suppose q = 2s for some s ≥ 1. We apply Lemma (4.1) in Monk’s paper [70]

to see that w⊥q−1 = wq−1
1 .
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Suppose w⊥q−1 = wq−1
1 . Since w⊥q−1 =

∑
a+2b=q−1

[(
a+b

a

)
mod 2

]
wa

1w
b
2, this

implies: (
q − b− 1

b

)
is even for all 1 ≤ b ≤ q

2
− 1.

Choose j ∈ N so that 2j ≤ q < 2j+1. We see that the 2-adic expansion of q is

given by q = 2j +
j−1∑
i=0

ai2i with the coefficients ai = 0 or 1. Let 0 ≤ N ≤ j so that

N := min {0 ≤ i ≤ j : ai = 1} be the first nonzero index. Suppose N < j, then the

2-adic expansion of q reduces to q = 2j +
j−1∑

i=N+1

ai2i + 2N . Choose b = 2N ≤ q
2 − 1,

we may express

q − b− 1 =2j + aj−12j−1 + ...+ aN+12N+1 − 1

=
j−1∑

i=N+1

(ai + 1)2i + 2N + 2N−1 + ...+ 2 + 1
.

By Lemma A.1, we have
(
q−b−1

b

)
≡

j−1∏
i=0

1 = 1 mod 2, which is false. Hence, N = j,

i.e. q is a power of 2. �

A.3 Lemma. Let φq :=
∑

a+b+c=q(u1 + u2)au1
bu2

c in Z2[u1, u2]. If φq = 0,

then q + 3 = 2s for some s.

Proof. For the convenience of the reader, we reproduce the argument from Stong

[84]. Suppose

(A.3.a) 0 = φq =
q∑

a=0

(u1 + u2)a
∑

b+c=q−a

u1
bu2

c ∈ Z2[u1, u2].

We multiply equation (A.3.a) by (u1 + u2) to see that

0 = φq =
q∑

a=0

∑
b+c=q−a

(u1
q+1−a + u2

q+1−c) ∈ Z2[u1, u2].

Hence,

0 = coefficient of u1
i in

q∑
a=0

(u1 + 1)a(u1
q+1−a + 1).
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But

q∑
a=0

(u1 + 1)a(u1
q+1−a + 1) =

q∑
a=0

u1
q+1

(u1 + 1
u1

)a +
q∑

a=0

(u1 + 1)a

= uq+1
1

{1 +
(

u1+1
u1

)q+1

1 +
(

u1+1
u1

) }
+

1 + (u1 + 1)q+1

1 + (u1 + 1)

= uq+2
1

{
1 +

(u1 + 1
u1

)q+1
}

+
1
u1
{1 + (u1 + 1)q+1}

=
1
u1
{u2

1[u
q+1
1 + (u1 + 1)q+1] + 1 + (u1 + 1)q+1}

=
1
u1
{uq+1

1 (1 + u2
1) + uq+3

1 + 1}

=
1
u1
{(1 + u1)q+3 + 1 + uq+3

1 }

=
q+2∑
t=1

(
q + 3
t

)
ut−1

1 .

Thus (1 + u1)q+3 ≡ 1 + uq+3
1 mod 2, and so q + 3 = 2s for some s. �
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APPENDIX B

THE INTERSECTION LEMMA

B.1 Lemma. Assume q ≥ 4.

(1) Let R be a rank 2 spacelike (or timelike) IP algebraic curvature tensor on Rp,q.

Let {x1, x2, x3} be vectors in Rp,q which span a spacelike 3-plane. Then

dim[W1(R(x1, x2)) ∩W1(R(x1, x3))] = 1 and

dim[W1(R(x1, x2)) +W1(R(x1, x3))] = 3.

(2) Let R be a rank 2 mixed Lorentzian IP algebraic curvature tensor. Let

{x1, x2, x3} be vectors in R1,q which span a spacelike 3-plane. Then

dim[W1(R(x1, x2)) ∩W1(R(x1, x3))] = 1 and

dim[W1(R(x1, x2)) +W1(R(x1, x3))] = 3.

(3) Let R be a rank 2 null IP Lorentzian algebraic curvature tensor. Let {x, y, z}

be an orthonormal set where y and z are spacelike vectors. Then

dim[W1(R(x, y))∩W1(R(x, z))] = 1 and

dim[W1(R(x, y)) +W1(R(x, z))] = 3.

Proof. Before dealing with the general case, we first establish a special case of the

Lemma. Let {x, y, z} be an orthonormal subset of spacelike vectors in Rp,q. Let

T1 := R(x, y) and T2 := R(x, z).
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We use the 1-parameter family π(θ) := Span{x, cos(θ)y+ sin(θ)z} for θ ∈ [0, 2π] to

prove our assertion in this special case. The fact that the characteristic polynomial

of

R(π(θ)) := cos(θ)T1 + sin(θ)T2

is independent of θ plays a crucial role in our discussion of this special case.

We have assumed that R does not change type. We first assume that R is

spacelike. By rescaling R we may assume R has eigenvalues {0,±
√
−1}. Suppose

that dim[W1(T1) ∩ W1(T2)] = 0. We then have dim[W1(T1) + W1(T2)] = 4. By

Lemma 5.1.1, we can find linearly independent unit spacelike vectors {u1, u2, v1, v2}

so

(1) W1(T1) = Span{u1, u2} with u1 ⊥ u2; T1u1 = u2, and T1u2 = −u1.

(2) W1(T2) = Span{v1, v2} with v1 ⊥ v2; T2v1 = v2, and T2v2 = −v1.

(3) g(u1, v2) = 0 and g(u2, v1) = 0.

Let a := g(u1, v1) and b := g(u2, v2). We compute:

T1v1 = g(T1v1, u1)u1 + g(T1v1, u2)u2 = −g(v1, T1u1)u1 − g(v1, T1u2)u2

= −g(v1, u2)u1 + g(v1, u1)u2 = au2.

T1v2 = g(T1v2, u1)u1 + g(T1v2, u2)u2 = −g(v2, T1u1)u1 − g(v2, T1u2)u2

= −g(v2, u2)u1 + g(v2, u1)u2 = −bu1.

T2u1 = g(T2u1, v1)v1 + g(T2u1, v2)v2 = −g(u1, T2v1)v1 − g(u1, T2v2)v2

= −g(u1, v2)v1 + g(u1, v1)v2 = av2.

T2u2 = g(T2u2, v1)v1 + g(T2u2, v2)v2 = −g(u2, T2v1)v1 − g(u2, T2v2)v2

= −g(u2, v2)v1 + g(u2, v1)v2 = −bv1.
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Thus

R(π(θ))u1 = (cos(θ)T1 + sin(θ)T2)u1 = cos(θ)u2 + a sin(θ)v2,

R(π(θ))u2 = (cos(θ)T1 + sin(θ)T2)u2 = − cos(θ)u1 − b sin(θ)v1,

R(π(θ))v1 = (cos θT1 + sin θT2)v1 = a cos(θ)u2 + sin(θ)v2,

R(π(θ))v2 = (cos θT1 + sin θT2)v2 = −b cos(θ)u1 − sin(θ)v1.

Thus relative to the basis {u1, u2, v1, v2}, R(π(θ)) has the form:

(B.1.a) R(π(θ)) =




0 − cos(θ) 0 −b cos(θ)
cos(θ) 0 a cos(θ) 0

0 −b sin(θ) 0 − sin(θ)
a sin(θ) 0 sin(θ) 0


 .

Since rank(R(π(θ))) = 2 for all θ ∈ [0, π], the determinant of all 3× 3 minors must

vanish identically. Thus for all θ ∈ [0, π] we have that

(B.1.b) 0 ≡ det


 0 − cos(θ) 0

cos(θ) 0 a cos(θ)
a sin(θ) 0 sin(θ)


 = − cos2(θ) sin(θ)(a2 − 1).

(B.1.c) 0 ≡ det


 0 − cos(θ) −b cos(θ)

cos(θ) 0 0
0 −b sin(θ) − sin(θ)


 = cos2(θ) sin(θ)(b2 − 1).

We use equations (B.1.b) and (B.1.c) to see a2 = b2 = 1. Note the metric on

Span{u1, u2, v1, v2} need not be positive definite, we can not apply the Cauchy-

Schwarz inequality. Let χθ(λ) be the characteristic polynomial of R(π(θ)) acting on

the space spanned by {u1, u2, v1, v2}; this space is R(π(θ)) invariant and contains
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the range of R(π(θ)). Thus χθ(λ) is independent of θ as R is IP. We compute:

χθ(λ) =det




λ cos(θ) 0 b cos(θ)
− cos(θ) λ −a cos(θ) 0

0 b sin(θ) λ sin(θ)
−a sin(θ) 0 − sin(θ) λ




=λ det


 λ − cos(θ) 0
b sin(θ) λ sin(θ)

0 − sin(θ) λ




− cos(θ) det


 − cos(θ) −a cos(θ) 0

0 λ sin(θ)
−a sin(θ) − sin(θ) λ




− b cos(θ) det


− cos(θ)λ −a cos(θ) 0

0 b sin(θ) λ
−a sin(θ) 0 − sin(θ)




=λ[λ(λ2 + sin2(θ)) + a cos(θ)λb sin(θ)]

− cos(θ)[− cos(θ)(λ2 + sin2(θ)) + a cos(θ)a sin2(θ)]

− b cos(θ)[b cos(θ) sin2(θ)− λ2a sin(θ)− a2b sin2(θ) cos(θ)]

=λ4 + λ2[sin2(θ) + cos2(θ) + 2ab sin(θ) cos(θ)]

+ sin2(θ) cos2(θ)[1− a2 − b2 + a2b2]

=λ4 + λ2[1 + 2ab sin(θ) cos(θ)] + sin2(θ) cos2(θ)[1 + a2b2 − a2 − b2].

Since a2 = b2 = 1, we have that χθ(λ) = λ4 + λ2[1 + 2ab sin(θ) cos(θ)]. The

eigenvalues of the matrix (B.1.a) are {0, 0,±
√
−1}. So χθ(λ) = λ4 + λ2. This

implies 2ab sin(θ) cos(θ) ≡ 0 for all θ ∈ [0, π]. This is not possible as ab 6= 0. This

shows that

dim[W1(R(x, y)) ∩W1(R(x, z))] ≥ 1.

Suppose dim[W1(R(x, y))∩W1(R(x, z))] = 2. ThenW1(R(x, y)) = W1(R(x, z)).

We use Lemma 5.1.1 to see that T1 = ±T2. It follows that R(π(θ)) = 0 for θ = ±π
4 ,

which is false. Thus we have dim[W1(R(x, y)) ∩W1(R(x, z))] = 1. This proves the

special case if R is spacelike; the proof is similar if R is timelike.
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We can now derive the general case from the special case discussed above. Let

{x1, x2, x3} span a spacelike 3-plane. We must further normalize this basis. We

apply the Gram-Schmidt process to define:

x̃1 :=
x1

|x1|
, x̃2 :=

x2 − g(x2, x̃1)x̃1

|x2 − g(x2, x̃1)x̃1|
, x̃3 :=

x3 − g(x3, x̃1)x̃1

|x3 − g(x3, x̃1)x̃1|
.

Then span{x1, x2, x3} = span{x̃1, x̃2, x̃3}. Furthermore, there are nonzero constants

c2 and c3 so that R(x1, x2) = c2R(x̃1, x̃2) and R(x1, x3) = c3R(x̃1, x̃3). Thus by

replacing {xi} by {x̃i} if necessary, we may assume without loss of generality that

|xi| = 1, x1 ⊥ x2, and x1 ⊥ x3.

Again, we apply the Gram-Schmidt process. We define

w :=
x3 − g(x3, x2)x2

|x3 − g(x3, x2)x2|
.

Since x3 ⊥ x1 and x2 ⊥ x1, we have that {x1, x2, w} is an orthonormal set. Further-

more, we may expand x3 = cos(θ)x2 +sin(θ)w for some θ ∈ [0, 2π]. Since x2 and x3

are linearly independent, sin(θ) 6= 0. Let T1 := R(x1, x2) and T2 := R(x1, w). We

then have

T := R(x1, x3) = cos(θ)T1 + sin(θ)T2 and T2 = csc(θ)(T − cos(θ)T1).

We compute:

W1(T ) ⊂ W1(T1) +W1(T2), W1(T2) ⊂W1(T ) +W1(T1), and

W1(T ) +W1(T2) = W1(T1) +W1(T2).

We apply the special case to the orthonormal set {x1, x2, w} to see that

3 = dim(W1(T1) +W1(T2)) = dim(W1(T ) +W1(T2)).
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We next assume R is a rank 2 mixed Lorentzian algebraic curvature tensor.

For clarity, we use τi to denote a unit timelike vector, and use σi to denote a unit

spacelike vector which is orthogonal to τi so that W1(Ti) = Span{τi, σi}. Conse-

quently, there exist nonzero constants ai and bi so Tiτi = aiσi and Tiσi = biτi where

g(Tiτi, σi) = ai and g(Tiσi, τi) = −bi. Since Ti is skew-symmetric, we have that

g(Tiτi, σi) = −g(τi, Tiσi). Thus ai = bi, and Ti has eigenvalues {0,±c}. By rescal-

ing R we may assume R has eigenvalues {0,±1}. The skew-symmetric operator Ti

defines a unitary paracomplex structure on W1(Ti)), i.e. T is unitary and T 2 = 1.

Suppose that dim[W1(T1)∩W1(T2)] = 0. We then have dim[W1(T1)+W1(T2)] = 4.

This enables us to find linearly independent unit vectors {τ1, σ1, τ2, σ2} so

(1) W1(T1) = Span{τ1, σ1}, T1τ1 = σ1, and T1σ1 = τ1.

(2) W1(T2) = Span{τ2, σ2}, T2τ2 = σ2, and T2σ2 = τ2.

Since dim[τ⊥1 ∩W1(T2)] ≥ (m− 1) + 2−m = 1, we can choose σ2 ⊥ τ1. Necessarily

σ2 is then spacelike; we normalize σ2 to have unit length and set τ2 := T2σ2. Thus

without loss of generality we may assume σ2 ⊥ τ1. Let A := g(τ1, τ2), B := g(τ2, σ1),

and C := g(σ1, σ2). We compute:

T1τ2 = g(T1τ2, σ1)σ1 − g(T1τ2, τ1)τ1 = −g(τ2, T1σ1)σ1 + g(τ2, T1τ1)τ1

= −g(τ2, τ1)σ1 + g(τ2, σ1)τ1 = −Aσ1 +Bτ1.

T1σ2 = g(T1σ2, σ1)σ1 − g(T1σ2, τ1)τ1 = −g(σ2, T1σ1)σ1 + g(σ2, T1τ1)τ1

= −g(σ2, τ1)σ2 + g(σ2, σ1)τ1 = Cτ1.

T2τ1 = g(T2τ1, σ2)σ2 − g(T2τ1, τ2)τ2 = −g(τ1, T2σ2)σ2 + g(τ1, T2τ2)τ2

= −g(τ1, τ2)σ2 + g(τ1, σ2)τ2 = −Aσ2.

T2σ1 = g(T2σ1, σ2)σ2 − g(T2σ1, τ2)τ2 = −g(σ1, T2σ2)σ2 + g(σ1, T2τ2)τ2

= −g(σ1, τ2)σ2 + g(σ1, σ2)τ2 = −Bσ2 + Cτ2.
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Thus

R(π(θ))τ1 = (cos(θ)T1 + sin(θ)T2)τ1 = cos(θ)σ1 −A sin(θ)σ2,

R(π(θ))σ1 = (cos(θ)T1 + sin(θ)T2)σ1 = cos(θ)τ1 + C sin(θ)τ2 −B sin(θ)σ2,

R(π(θ))τ2 = (cos(θ)T1 + sin(θ)T2)τ2 = B cos(θ)τ1 −A cos(θ)σ1 + sin(θ)σ2,

R(π(θ))σ2 = (cos(θ)T1 + sin(θ)T2)σ2 = C cos(θ)τ1 + sin(θ)τ2.

Thus relative to the basis {τ1, σ1, τ2, σ2}, R(π(θ)) has the form:

R(π(θ)) =




0 cos(θ) B cos(θ) C cos(θ)
cos(θ) 0 −A cos(θ) 0

0 C sin(θ) 0 sin(θ)
−A sin(θ) −B sin(θ) sin(θ) 0


 .

Since rank(R(π(θ))) = 2 for all θ ∈ [0, π], all 3× 3 minors must vanish identically.

Thus for all θ ∈ [0, π] we have that

(B.1.d) 0 ≡ det


 0 cos(θ) B cos(θ)

cos(θ) 0 −A cos(θ)
0 C sin(θ) 0


 = − cos2(θ) sin(θ)BC.

(B.1.e) 0 ≡ det


 0 cos(θ) C cos(θ)

cos(θ) 0 0
0 C sin(θ) sin(θ)


 = cos2(θ) sin(θ)(C2 − 1).

(B.1.f) 0 ≡ det


 cos(θ) 0 −A cos(θ)

0 C sin(θ) 0
−A sin(θ) −B sin(θ) sin(θ)


 = sin2(θ) cos(θ)(CA2 − C).

We use equations (B.1.d), (B.1.e), and (B.1.f) to see A2 = C2 = 1, and B = 0.

Thus we have

(B.1.g) R(π(θ)) =




0 cos(θ) 0 C cos(θ)
cos(θ) 0 −A cos(θ) 0

0 C sin(θ) 0 sin(θ)
−A sin(θ) 0 sin(θ) 0


 .
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Let χθ(λ) be the characteristic polynomial ofR(π(θ)) acting on the space spanned by

{τ1, σ1, τ2, σ2}; this space is R(π(θ)) invariant and containing the range of R(π(θ)).

Thus χθ(λ) is independent of θ as R is IP. We compute:

χθ(λ) =det




λ − cos(θ) 0 −C cos(θ)
− cos(θ) λ A cos(θ) 0

0 −C sin(θ) λ − sin(θ)
A sin(θ) 0 − sin(θ) λ




=λ det


 λ A cos(θ) 0
−C sin(θ) λ − sin(θ)

0 − sin(θ) λ




+ cos(θ) det


− cos(θ) A cos(θ) 0

0 λ − sin(θ)
A sin(θ) − sin(θ) λ




+ C cos(θ) det


− cos(θ) λ A cos(θ)

0 −C sin(θ) λ
A sin(θ) 0 − sin(θ)




=λ[λ(λ2 − sin2(θ))− A cos(θ)(−λC sin(θ))]

+ cos(θ)[− cos(θ)(λ2 − sin2(θ))− A cos(θ)(A sin2(θ))]

+ C cos(θ)[− cos(θ)(C sin2(θ))

− λ(−λA sin(θ)) +A cos(θ)(A sin(θ)C sin(θ))]

= λ4 + λ2[− sin2(θ)− cos2(θ) + 2AC sin(θ) cos(θ)]

+ sin2(θ) cos2(θ)(1 + A2C2 − A2 − C2)

=λ4 + λ2[2AC sin(θ) cos(θ)− 1] + sin2(θ) cos2(θ)(1 + A2C2 − A2 − C2).

Since A2 = C2 = 1, we have that χθ(λ) = λ4 + λ2[2AC sin(θ) cos(θ) − 1]. The

eigenvalues of the matrix (B.1.g) are {0, 0,±1}. So we must have χθ(λ) = λ4 − λ2.

This implies 2AC sin(θ) cos(θ) ≡ 0 for all θ ∈ [0, π]. This is not possible as AC 6= 0.

This shows that

dim[W1(R(x, y)) ∩W1(R(x, z))] ≥ 1.
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We show similarly that dim[W1(R(x, y)) ∩W1(R(x, z))] 6= 2. This completes the

proof of analysis of the situation when we are dealing with a spacelike orthonormal

set.

We can now derive the general case from the special case discussed above. Let

{x1, x2, x3} span a spacelike 3-plane. We must further normalize this basis. We

apply the Gram-Schmidt process to define:

x̃1 :=
x1

|x1|
, x̃2 :=

x2 − g(x2, x̃1)x̃1

|x2 − g(x2, x̃1)x̃1|
, x̃3 :=

x3 − g(x3, x̃1)x̃1

|x3 − g(x3, x̃1)x̃1|
.

Then span{x1, x2, x3} = span{x̃1, x̃2, x̃3}. Furthermore, there are nonzero constants

c2 and c3 so that R(x1, x2) = c2R(x̃1, x̃2) and R(x1, x3) = c3R(x̃1, x̃3). Thus by

replacing {xi} by {x̃i} if necessary, we may assume without loss of generality that

|xi| = 1, x1 ⊥ x2, and x1 ⊥ x3.

Again, we apply the Gram-Schmidt process. We define

w :=
x3 − g(x3, x2)x2

|x3 − g(x3, x2)x2|
.

Since x3 ⊥ x1 and x2 ⊥ x1, we have that {x1, x2, w} is an orthonormal set. Further-

more, we may expand x3 = cos(θ)x2 +sin(θ)w for some θ ∈ [0, 2π]. Since x2 and x3

are linearly independent, sin(θ) 6= 0. Let T1 := R(x1, x2) and T2 := R(x1, w). We

then have

T := R(x1, x3) = cos(θ)T1 + sin(θ)T2 and T2 = csc(θ)(T − cos(θ)T1).

We compute:

W1(T ) ⊂ W1(T1) +W1(T2), W1(T2) ⊂W1(T ) +W1(T1), and

W1(T ) +W1(T2) = W1(T1) +W1(T2).
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The lemma now follows by applying the special case to the sapcelike orthonormal

set {x1, x2, w}.

Let R be a rank 2 null IP Lorentzian algebraic curvature tensor. Let {x, y, z}

be an orthonormal set where y and z are spacelike vectors. Note that

π(θ) := Span{x, cos θy + sin θz}

is nondegenerate for all θ ∈ [0, π] and the type of the plane π(θ) does not change.

Since R has only the zero eigenvalue, for any θ ∈ [0, π], R(π(θ)) ∈ so
N
2 (1, q). Let

ξ ∈ R1,q be a unit timelike vector. We apply Lemma 4.1.2 (2c) to see that

W1(R(x, y)) =Span{R(x, y)ξ, R2(x, y)ξ}

W1(R(x, z)) =Span{R(x, z)ξ, R2(x, z)ξ}

We assume the lemma fails and argue for a contradiction.

Suppose that W1(R(x, y))∩W1(R(x, z)) = {0} . We use the identity

dim[W1(R(x, y))] + dim[W1(R(x, z))] = dim[W1(R(x, y))∩W1(R(x, z))]

+ dim[W1(R(x, y)) +W1(R(x, z))]

to see that dim[W1(R(x, y)) +W1(R(x, z))] = 4. Consequently, the vectors

{R(x, y)ξ, R(x, z)ξ, R2(x, y)ξ, R2(x, z)ξ}

are linearly independent. By Lemma 4.1.2 (2d), R2(x, y)ξ and R2(x, z)ξ are nonzero

null vectors. We use Lemma 4.3.1 to see that the null vectors {R2(x, y)ξ, R2(x, z)ξ}

are linearly independent if and only if g(R2(x, y)ξ, R2(x, z)ξ) 6= 0. There exist

constants αi and βi , for i = 1, 2 so that:

R(x, z)(R(x, y)ξ) = α1R(x, z)ξ + α2R
2(x, z)ξ,

R(x, z)(R2(x, y)ξ) = β1R(x, z)ξ + β2R
2(x, z)ξ,

α1 := −g(R(x, y)ξ, R2(x, z)ξ)
|R(x, z)ξ|2 , and

β1 := −g(R
2(x, y)ξ, R2(x, z)ξ)
|R(x, z)ξ|2 6= 0.
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The coefficient β1 is crucial. Consider the following system of equations:

R(x, y + z)(ξ) = R(x, y)ξ +R(x, z)ξ,

R(x, y + z)(R(x, y)ξ) = α1R(x, z)ξ +R2(x, y)ξ + α2R
2(x, z)ξ, and

R(x, y + z)(R2(x, y)ξ) = β1R(x, z)ξ + β2R
2(x, z)ξ.

Relative to the basis {R(x, y)ξ, R(x, z)ξ, R2(x, y)ξ, R2(x, z)ξ}, we write the coeffi-

cient matrix associated with the above equations as:
 1 1 0 0

0 α1 1 α2

0 β1 0 β2


 .

Notice this matrix contains the 3× 3 submatrix whose determinant is

det


 1 1 0

0 α1 1
0 β1 0


 = −β1 6= 0.

Thus, rankR(x, y + z) ≥ 3, which is false.

Next we suppose that dim[W1(R(x, y))∩W1(R(x, z))] = 2. This implies

RangeR(x, y) = RangeR(x, z).

We can express

R(x, z)ξ = αR(x, y)ξ + βR2(x, y)ξ.

Since R(x, y)ξ is spacelike, α 6= 0. So R(x, z − αy)ξ = βR2(x, y)ξ is a null vector.

This contradicts Lemma 4.1.2 (2d). Hence dim[W1(R(x, y)) ∩ W1(R(x, z))] = 1.

The remaining assertion now follows. �

We can now improve Lemma B.1 slightly by removing the restriction that

span{x1, x2, x3} is spacelike.

B.2 Lemma. Let R be a rank 2 spacelike (or timelike) algebraic curvature tensor

or let R be a rank 2 mixed Lorentzian algebraic curvature tensor. Let {x1, x2, x3}
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be linearly independent vectors in Rp,q so that span{x1, x2} and span{x1, x3} are

spacelike 2-planes. Then

dim[W1(R(x1, x2)) ∩W1(R(x1, x3))] = 1 and

dim[W1(R(x1, x2)) +W1(R(x1, x3))] = 3.

Proof. Let π1 := Span{x1, x2} and π2 := Span{x1, x3}. By Lemma 5.2.2, we have

L(x1) ⊂ W1(R(π1)) ∩W1(R(π2)). Thus dim[W1(R(x1, x2)) ∩W1(R(x1, x3))] ≥ 1.

Suppose the Lemma fails. Then W1(R(π1)) ∩W1(R(π2)) is 2 dimensional so

(B.2.a) W1(R(π1)) = W1(R(π2)).

Let {x1, yi} be an orthonormal basis for the spacelike 2-planes πi. Let E be the

span of {y1, y2}. If E is spacelike, then {x1, y1, y2} spans a spacelike 3-plane and

(B.2.a) contradicts Lemma B.1. We distinguish two cases:

Case 1: Suppose that E is mixed. Choose a unit timelike vector z ∈ E so that

z ⊥ y1. Then {y1, z} is an orthonormal basis for E. We express

y2 = cosh(θ)y1 + sinh(θ)z for some θ where sinh(θ) 6= 0.

Let T1 := R(x1, y1) and T2 := R(x1, z). By rescaling we may assume R has

eigenvalues {0,±
√
−1}. The operators T1 and cosh(θ)T1 + sinh(θ)T2 are rotations

through 90◦ in the same subspace and they vanish on the same orthogonal com-

plements. Thus T1 = ±(cosh(θ)T1 + sinh(θ)T2) and thus T2 is some nonzero mul-

tiple c of T1. Let ϕ be any angle and let y(ϕ) := cosh(ϕ)y1 + sinh(ϕ)z. Then

R(x1, y(ϕ)) = (cosh(ϕ) + c sinh(ϕ))T1. The eigenvalues of R(x1, y(ϕ)) are then

dependent on ϕ which is false as y(0) ⊥ x is a unit spacelike vector.
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Case 2: Suppose that E is degenerate. Choose 0 6= z ∈ E ∩ y⊥1 . Since E is

degenerate, z is null. We may express y2 = ε(y1 + dz) where ε = ±1 and d is

a nonzero constant. Let T1 := R(x1, y1) and T2 := R(x1, z). By rescaling we

may assume R has eigenvalues {0,±
√
−1}. The operators T1 and ε(T1 + dT2) are

rotations through 90◦ in the same subspace and they vanish on the same orthogonal

complements. Thus ±T1 = ε(T1 + dT2) and thus again T2 is some nonzero multiple

d̃ of T1. Let ϕ ∈ R and let y(ϕ) := y1 + ϕz. It is then clear that the eigenvalues

of R(x1, y(ϕ)) = (1 + ϕd̃)T1 are independent of ϕ only if d̃ = 0. Thus we conclude

R(x1, z) = 0. We express z = e(w1 + w2) where w1 and w2 are unit spacelike

and timelike vectors respectively. We then have R(x1, w1) + R(x1, w2) = 0. Let

w(t) := cosh(t)w1 + sinh(t)w2 be a 1-parameter family of unit spacelike vectors.

The eigenvalues of R(x1, w(t)) = (cosh(t) − sinh(t))R(x1, w1) are then dependent

on t which is false. This completes the proof of the lemma. �



124

REFERENCES

[1] J. Adams, Vector fields on spheres, Ann. of Math. 75 (1962), 603–632.

[2] M. F. Atiyah, K-Theory, Advanced book classics, Addison-Wesley, New York,
1967.

[3] M. F. Atiyah, R. Bott, and A. Shapiro, Clifford Modules, Topology 3 suppl.
1 (1964), 3–38.

[4] M. Belger and G. Stanilov, About the Riemannian geometry of some curvature
operators, in press, Annuaire de l’Univ Sofia 1 (1995).

[5] J. Berndt and L. Vanhecke, Two natural generalizations of locally symmetric
spaces, Differ. Geom. Appl. 2 (1992), 57–80.

[6] , Geodesic spheres and generalizations of symmetric spaces, Boll. Un.
Mat. Ital. (to appear).

[7] A. L. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Math-
ematik und ihrer Grenzgebiete, 93, Springer, Berlin, 1978.

[8] , Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebi-
ete, 3. Folge, 10, Springer, Berlin, Heidelberg and New York, 1987.
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