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AS-regular algebras of global dimension n were defined in [3] as non-commutative

analogues of the polynomial algebra on n-variables. An AS-regular algebra A is a

finitely generated connected N-graded k-algebra. It has a presentation as T (V ∗)/I

where T (V ∗) is the tensor algebra on a finite-dimensional vector space V ∗ and I is

a homogeneous ideal. The zeroes of the generators of I define a projective scheme

Γ called the point scheme of A. The AS-regular algebras of global dimension 4 have

not been classified. We construct many new families of AS-regular algebras of global

dimension 4 whose point schemes Γ have finitely many points. We prove that all of

our examples are finitely generated modules over their centers and are Noetherian

domains. For one of our examples we find the fat point modules. Finally we prove

results about generic k-algebras with 5 generators and 10 quadratic relations.
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CHAPTER I

INTRODUCTION

I.1. Background and History

Non-commutative projective algebraic geometry studies a non-commutative graded

algebra A by associating a category ProjA in which one can do geometry. More

specifically, ProjA is a quotient category of the module category Gr ModA of graded

modules by the dense subcategory of direct limits of finite-dimensional modules. This

is not a new idea. In the 50’s, Serre taught us that the projective algebraic geom-

etry of a commutative graded ring R is the study of a quotient category ProjR of

the graded module category Gr ModR. More precisely, let R be a commutative con-

nected N-graded k-algebra, where k is an algebraically closed field, and assume R

is generated by R1 as a k-algebra. Let (X,OX) = ProjR be the projective scheme

defined by R. We define an equivalence relation on graded R-modules by M ∼M ′ if

there is an integer n for which M≥n
∼= M ′

≥n where M≥n =
⊕
d≥n

Md.

Theorem I.1.1. [10] [Ex. II.5.9] The category of finitely generated R-modules mod-

ulo the equivalence relation ∼ is equivalent to the category of coherent OX-modules.

Therefore the geometric object ProjR can be studied via algebraic objects, the

graded modules of R.
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In the case of a non-commutative algebra A there is no associated geometric

scheme X. However the category ProjA exists, and should be considered as the

space in which the geometry of A lives. This was the point of view taken by Artin

and Schelter in [2] where they defined AS-regular algebras.

Definition I.1.2. Let k be a field. An AS-regular algebra A is a connected N-graded

k-algebra which is Gorenstein, has finite global dimension, and finite Gelfand-Kirillov

dimension.

The polynomial ring k[x1, . . . , xn] is an AS-regular algebra of global dimension n.

We think of AS-regular algebras as noncommutative deformations of k[x1, . . . , xn].

We now discuss some of the highlights and successes of the geometric point of view

in the study of AS-regular algebras.

The AS-regular algebras of global dimensions 1 and 2 are trivial to classify. The

AS algebras of dimension 3 which are generated in degree 1 were classified in [2,

3]. Stephenson classified the AS-algebras of dimension 3 which are not necessarily

generated in degree 1 in [28, 29, 30].

The classification is based on the following ideas. Given an AS-regular algebra A,

the relations of A can be thought of as functions on a product of projective spaces.

Then the zeroes of the relations are a commutative projective scheme. This scheme

is denoted by Γ. The Gorenstein condition is used to prove that Γ is the graph of an

automorphism τ of a projective scheme E. The pairs (E, τ) are then used to classify

the AS-regular algebras of dimension 3. The point scheme of A is the pair (E, τ) or
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equivalently the scheme Γ. For example, in the global dimension 3 case when A is

generated in degree 1, generically E is an elliptic curve in P2.

Using the above classification, Artin, Schelter, Tate, van den Bergh et. al., proved

the following remarkable theorems.

Theorem I.1.3. [3] Suppose A is an AS-regular algebra of global dimenson 3 which

is generated in degree 1, then A is a Noetherian domain.

Theorem I.1.4. [4] Let A be an AS-regular algebra of global dimension 3 which is

generated in degree 1, and let (E, τ) be the point scheme. Then τ has finite order if

and only if A is a finitely generated module over its center.

Despite the numerous examples that have been studied, a classification in the

global dimension 4 case still seems to be a long way off. In this thesis we restrict

ourselves to studying quantum P3’s. Recall, the Hilbert series of a graded k-algebra

A =
⊕
n≥0

An is HA(t) =
∑
n≥0

dimk An.

Definition I.1.5. A quantum Pn is an AS-regular algebra of global dimension n

whose Hilbert series is
1

(1− t)n
.

So a quantum P3 has the same Hilbert series as the polynomial ring k[x1, x2, x3, x4].

Many examples of quantum P3’s have been studied. For example, Cassidy [7] has

classified the quantum P3’s which are normal extensions of global dimension 3 AS-

regular algebras. Another example is the Sklyanin algebras, first defined by Odesskii

and Feigen, which are quantum Pn’s constructed from the data of an elliptic curve
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E and an automorphism τ of E. The Sklyanin algebras of dimension 4 have been

extensively studied in [14, 23, 25, 26]. The survey [24] is a good summary of what is

known about the 4-dimensional Sklyanin algebras. Shelton and Vancliff have studied

in [21] the quantum P3’s which have as quotients twisted homogeneous coordinate

rings of quadric surfaces in P3. As a final example, LeBruyn in [12] has studied

Clifford algebras.

As a result of studying these examples, people have isolated the following classes

of modules as important in the study of AS-regular algebras. These modules should

be thought of as geometric objects, hence the terminology. This point of view

is supported by the fact that in many situations, the modules defined below are

parametrized by projective commutative schemes.

Definition I.1.6. Let A be a quantum Pn.

1) A point module P is a graded right A-module which is cyclic, generated in degree

0, and has Hilbert series
1

1− t
.

2) A fat point module F is a graded right A-module which has GKdim 1, is GK-

critical and has multiplicity m > 1, i.e., dimk Fn = m for all n >> 0.

3) A line module L is a graded right A-module which is cyclic, generated in degree

0, and has Hilbert series
1

(1− t)2
.

In [18], Shelton and Vancliff prove there are projective schemes representing

the functors of point modules and line modules. In fact the point scheme (E, τ)
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parametrizes the point modules. In the quantum P3 case, generically, the point

scheme Γ consists of 20 points counted with multiplicity. In particular, generically Γ

is a zero-dimensional scheme. In [18], Shelton and Vancliff prove the counter-intuitive

result: if dim(Γ) = 0 then the relations of A are precisely the 2-forms which vanish

on Γ.

The examples studied above: extensions of AS-regular algebras, Sklyanin algebras,

AS-regular algebras containing a quadric surface, all have point schemes of dimen-

sion at least one. So, while interesting, they should not be considered as generic

representatives of the class of quantum P3’s. We make the following definition.

Definition I.1.7. Let A be a quantum P3. We say A is a generic quantum P3 if

dim Γ = 0.

I.2. Statements of Main Theorems

The thesis is organized as follows. Chapter 2 begins with general definitions and

preliminaries, we discuss the result II.1.6 and how it can be used to construct examples

of quantum Pn’s. Then we prove Theorem II.2.4 which is useful for proving that a

given quantum P3 is finite over its center.

Theorem I.2.1. Let A be a finitely generated N-graded k-algebra with HA(t) =

p(t)

(1− t)n
for some p(t) ∈ k[t] and n ∈ N. Suppose that a1, . . . , an is a regular se-

quence of homogeneous elements of positive degree which are all central. Let A′ =
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A/(a1, . . . , an) and Z(A) denote the center of A. Then:

1. A is a finitely generated module over Z(A).

2. C := k[a1, . . . an] is a weighted polynomial ring.

3. A′ is a finite-dimensional ring. A is a free C-module of rank dimk A
′.

Chapter 3 is the heart of the thesis. In III.1, we study an example of a quantum

P3, A, found by Shelton and Tingey, whose point scheme has exactly 20 points. We

compute the graded automorphism group (modulo scalars) of A. We compute the

right graded twists of A. The main theorem of this section is Theorem III.1.20 where

we prove that the Shelton-Tingey algebra and all of its right graded twists are finite

modules over their centers.

In III.2, we use II.1.6 to construct many new examples of generic quantum P3’s.

In Construction 1 we build an Ore extension of the first homogenized Weyl algebra

A1(k). From this we construct a one parameter family of generic quantum P3’s,

denoted by Sα, α ∈ k∗. We refer the reader to III.2 for the definition of Sα. The main

result is Theorem III.2.7:

Theorem I.2.2. Let Sα be as in III.2.5. Let C = k[x1x4 + x4x1, x
2
3, x1x2 + x2x1, x

2
1]

and let Z denote the center of Sα. Then:

1. Sα is a finitely generated module over Z.

2. C is a weighted polynomial ring.
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3. Sα is a free module of rank 16 over C.

In fact, the dependence on the parameter α is illusory. We show that Sα
∼= Sα′

for all α, α′ ∈ k∗.

In Construction 2 we build families of generic quantum P3’s. We start from a skew

polynomial ring and construct an Ore extension by a nontrivial derivation δ. From

this we build some families of generic quantum P3’s. The main results are Examples

III.2.11, and III.2.12, in which we demonstrate that each algebra in the family is

a generic quantum P3 and is a finitely generated module over its center. We also

determine the number of points in the point scheme for each of the examples, and for

Example III.2.12 we calculate the multiplicities of each of the points in Γ.

Chapter 4 concerns the geometry of fat point modules and the incidence relations

between point modules and line modules. We begin with general remarks on the

notions of fat points and fat point modules. In Section 2 we study the geometry of

the fat point modules for the twist of the Shelton-Tingey example, Ad3 . By III.1.20,

Ad3 is a free module over a polynomial subring C. Given a fat point module F , let

ζ = C ∩ AnnA(F ). We prove ζ is a closed point of ProjC. For each closed point

ζ ∈ ProjC we construct functorially a finite-dimensional algebra Aζ . We consider a

basic affine subscheme X ⊂ C and for each ζ ∈ X we study the algebra Aζ . There

are two main results. In Theorem IV.1.9 we determine the fat point modules of

multiplicity 2 for which ζ ∈ X. We refer the reader to IV.1.9 for the undefined terms.

Theorem I.2.3. Let A denote the twist of the Shelton-Tingey example by the auto-



8

morphism d3. Let C = k[x2
1, x

2
2,Ω1,Ω2] denote the central subalgebra given above. Let

X denote the affine scheme of ProjC given by

X = {(αx2
1 − x2

2, βx
4
1 − Ω1, γx

4
1 − Ω2) | α, β, γ ∈ k}

. Then:

1) Generically, there exist two families of multiplicity 2 fat point modules. These

families are given by two affine curves, C1, C2 in X.

2) For each point ζ ∈ Ci, i = 1, 2 there are exactly 2 non-isomorphic multiplicity 2

fat point modules lying over ζ.

3) The truncated shift functor, [−1]≥0, on graded modules has order 2 on C1 but has

order 1 on C2.

The interpretation of 3) is as follows. If F ∈ F1 lies over ζ then F [−1]≥0 ∈ F1

and F [−1]≥0 also lies over ζ. Whereas if F ′ ∈ F3 then F ′[−1]≥0
∼= F ′ as graded

A-modules.

In Theorem IV.1.12 we find a three parameter family of multiplicity 4 fat point

modules. For fixed values of the three parameters we show that there are precisely 2

non-isomorphic fat point modules. This shows that for generic ζ ∈ X, the ring Aζ is

semisimple and is isomorphic to M4(k)×M4(k).

In Section 4 we find the incidence relations between the point modules and the

line modules for the Shelton-Tingey example. Let P be a point module and L be a
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line module. We say P lies on L if there exists a surjective homomorphism of graded

modules L � P . For a point module P , let LP be the scheme of line modules passing

through P . Then we prove Theorem IV.2.5 which determines the scheme LP for each

of the 20 point modules for the Shelton-Tingey example.

Finally in Chapter 5, we start by proving Theorem V.1.2:

Theorem I.2.4. The generic k-algebra on 5 linear generators and 10 quadratic re-

lations has no truncated point or truncated line modules of length 3.

From this it immediately follows that a generic k-algebra on 5 linear generators

and 10 quadratic relations has no point or line modules. We define d-linear modules

as in [17]. We then prove some results about the d-linear modules of a quantum P4.
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CHAPTER II

PRELIMINARIES AND DEFINITIONS

II.1. Preliminaries

We start this chapter by introducing the definitions and notation which will be

in force for the rest of the paper. Then we will discuss a certain recipe from [17]

which can be used to produce new examples of quantum P3’s from the data of a given

quantum P3 and a quadratic normal regular sequence.

Unless otherwise stated, k, will always denote an algebraically closed field of

characteristic 0. A graded k-algebra A is understood to be an N-graded k-algebra,

A =
⊕
n≥0

An, where dimk An <∞ for all n ≥ 0. All modules, unless otherwise stated,

are graded right A-modules M =
⊕
n∈Z

Mn with dimk Mn < ∞ for all n ∈ Z. We say

M is bounded below if there is an n ∈ Z for which Mi = 0 for all i < n. The shift of

M by degree i ∈ Z is the module M [i] which is M as a vector space but M [i]n = Mi+n

for all n ∈ Z. We will sometimes use the phrase “M is finite over A” to mean that

M is a finitely generated A-module.

By Gr ModA we mean the category of graded right A-modules with morphisms

given by degree 0 homomorphisms. The subcategory FdimA is the full subcategory

of Gr ModA consisting of direct limits of finite-dimensional modules. Then FdimA
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is a dense subcategory [22] and following [5], we let ProjA = Gr ModA/FdimA

denote the corresponding quotient category. For M,M ′ ∈ Gr Mod, write M ∼ M ′ if

M≥n
∼= M≥n for some n ∈ Z. Then M and M ′ define the same object in ProjA if

and only if M ∼M ′.

Suppose A is a finitely generated k-algebra, and M is a finitely generated A-

module. Let V be a finite-dimensional generating subspace of A which contains 1. Let

F be a finite-dimensional subspace of M which generates M as an A-module. Define

a function dM : N → N by d(n) = dimk(FV
n). One can show that d is independent

of the choice of V and F , for example see [11]. Then the Gelfand-Kirillov dimension

of M is given by

GKdimM = lim sup logn dM(n).

A graded, finitely generated A-module, M , of GKdim = n is GK-homogeneous if

every nonzero submodule N ⊂ M has GKdimN = n. M is GK-critical if every

proper quotient module Q has GKdim < n. The Hilbert series of a graded module

M is given by HM(t) =
∑
n∈Z

dimk Mnt
n. If HM(t) =

p(t)∏n
i=1(1− tdi)

with p(t) ∈ K[t]

and di ∈ N then GKdimM is the order of the pole of HM(t) at t = 1.

Artin and Schelter defined the following class of rings in [2]. These will be the

main object of study in the sequel.

Definition II.1.1. Let A be an N-graded connected k-algebra with k a field. Then

A is a regular algebra of dimension n if the following hold:

1) A has finite global dimension n
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2) A has finite Gelfand-Kirillov dimension

3) A has the Gorenstein property.

We follow the definitions in [15]. Given a right R-module M , the projective

dimension of M , pdM , is the shortest length n of a finite projective resolution

0 → Pn → · · · → P0 →M,

or ∞ if no finite resolution exists. The (right) global dimension of a ring R is given

by

gldimR = sup{pdM},

where the supremum is taken over all R-modules, M .

A connected graded k-algebra A of global dimension n satisfies the Gorenstein

property if the trivial module kA = A/A+, (A+ =
⊕
n>0

An) has a projective resolution

P• by finitely generated projectives,

0 → Pn → · · · → P0 → kA

for which the dual sequence HomGrMod(P•, A),

0 → P ∗
0 → · · · → P ∗

n →A k[e]

is a resolution of the trivial module Ak[e] for some integer e. Equivalently Extp
A(kA, A) =

δp
nk[e] for some integer e.

One can restrict to the class of regular algebras that have the same Hilbert series

as polynomial rings. These are the quantum Pn’s.
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Definition II.1.2. Let A be an N-graded k-algebra with k a field. Then A is a

quantum Pn if the following hold:

1) A has finite global dimension n+ 1

2) HA(t) =
1

(1− t)n+1

3) A has the Gorenstein property.

Definition II.1.3. Let R be a ring. Then we say x ∈ R is normal if xR = Rx. We

say x ∈ R is regular if x is not a left or right zero divisor, and x ∈ R is left (right)

regular if x is not a left (right) zero divisor.

Notice that if x ∈ R is normal and regular then x defines an automorphism

Ω : R→ R via the rule xr = Ω(r)x for all r ∈ R.

Definition II.1.4. Let R be a ring. A sequence x1, . . . , xn is a normal regular se-

quence in R if:

1) x1 is a normal, regular element in R

2) xi is a normal, regular element in R/(x1, . . .,xi−1)R for all 2 ≤ i ≤ n.

Normal sequences are defined similarly. A useful way of detecting regular se-

quences in graded rings is the following.

Lemma II.1.5. Let A be a locally finite graded k-algebra. Let x1, . . .,xn be a normal

sequence of homogeneous elements with deg(xi) = di. Then x1, . . .,xn is a regular
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sequence if and only if

HA/(x1,...,xn)A(t) =
n∏

i=1

(1− tdi) ·HA(t).

Proof. Use induction on n. For the case n = 1, regularity of x is equivalent to the

sequence

0 −→ A
·x−→ A −→ A/xA→ 0

being exact. By counting dimensions, this is equivalent to HA/xA(t) = (1− td)HA(t),

where d = deg x. Now suppose x1, . . . , xn, xn+1 is a normal regular sequence. Then

the sequence

0 −→ A/(x1, . . . xn)A
·xn+1−−−→ A/(x1, . . . xn)A −→ A/(x1, . . . xn+1)A→ 0

is exact. So that

HA/(x1,...xn+1)A = (1− tdn+1)HA/(x1,...xn)A

=
n+1∏
i=1

(1− tdi) ·HA(t) by induction.

Conversely, if x1, . . . , xn+1 is not regular then there is an index i for which x1, . . . , xi−1

is regular and xi is not regular modulo x1, . . . , xi−1. Hence there is an exact sequence

0 −→ K → A/(x1, . . . xi−1)A
·xi−→ A/(x1, . . . xi−1)A −→ A/(x1, . . . xi)A→ 0
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with K 6= 0. Hence

HA/(x1,...,xi)A > HA/(x1,...,xi)A −HK

= (1− tdi)HA/(x1,...,xi−1)A

=
i∏

j=1

(1− tdj) ·HA by induction.

The notation
∑
n≥0

ant
n >

∑
n≥0

bnt
n, for power series in Z[[t]], means that an ≥ bn for

all n ∈ N and for at least one i ∈ N, ai > bi.

Now quotienting out the next element xi+1 we have the exact sequence

0 −→ K ′ → A/(x1, . . . xi)A
·xi+1−−−→ A/(x1, . . . xi)A −→ A/(x1, . . . xi+1)A→ 0

And again

HA/(x1,...,xi+1)A ≥ HA/(x1,...,xi+1)A −H ′
K

= (1− tdi+1)HA/(x1,...,xi)A

>
i+1∏
j=1

(1− tdj) ·HA

Therefore

HA/(x1...,xn+1)A >
n+1∏
j=1

(1− tdj ) ·HA

as desired.

The following theorem, due to Shelton-Tingey [17], gives a recipe for constructing

new examples of quantum Pn’s. Recall that given a quadratic algebra A = T (V ∗)/I,

its Koszul dual A! is T (V ∗)/I⊥ where I⊥ is generated by I⊥2 ⊂ V ∗ ⊗ V ∗. We define

I⊥2 by fixing a nondegenerate bilinear form on V ∗ ⊗ V ∗.
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Theorem II.1.6. [17] Let A be a quantum Pn and suppose x1, . . .,xn+1 is a quadratic

normal regular sequence in A. If B = (A/(x1, . . . , xn+1))
! then B is a quantum Pn.

We now aim toward defining a “generic” 4-dimensional algebra. Let A = T (V ∗)/I

where V ∗ is a 4-dimensional k-vector space, T (V ∗) is the tensor algebra on V ∗, and

I is a homogeneous ideal generated by quadratic elements, say f1, . . . , f6 ∈ V ∗ ⊗ V ∗.

Consider the scheme

Γ = {p ∈ P(V )× P(V ) | fi(p) = 0, 1 ≤ i ≤ 6}.

Equivalently, consider the Segre embedding of P(V )×P(V ) in P(V ⊗V ) and let S be

the associated homogeneous coordinate ring of P(V )×P(V ). The quadratic relations,

fi, define (1,1)-homogeneous forms in S. Let J be the ideal of S generated by these

relations. Then Γ = Proj(S/J).

Define the point scheme of A to be the scheme Γ. By [21], for any quadratic

N-graded algebra having 4 generators and 6 quadratic relations, Γ is nonempty and

generically has dimension 0. Furthermore an easy application of Bezout’s theorem

shows: whenever dim Γ = 0 then Γ has 20 points counted with multiplicity.

Definition II.1.7. Suppose k is an algebraically closed field. LetX be a 0-dimensional

k-scheme with structure sheaf OX . Let p ∈ X. Then the multiplicity of p is given by

m(p) = dimk OX,p where OX,p is the local ring at p.

We say that A is generic if the point scheme Γ is finite. If in addition A is a

quantum P3, we say A is a generic quantum P3.
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Although AS-regular algebras can be thought of as deformations of the com-

mutative polynomial ring, it is the generic ones which are the furthest from being

polynomial. The point scheme of k[x1, x2, x3, x4] is the diagonal in P(V )× P(V ). As

another example, the Sklyanin algebras have 1-dimensional point schemes.

The point scheme has more structure. In the case of a quantum P3 it is the graph

of an automorphism. Let E = π1(Γ) where π1 : P3 × P3 → P3 is the projection onto

the first factor. Here is the precise result.

Theorem II.1.8. [21] Let A = T (V ∗)/I be an N-graded connected k-algebra which

satisfies the following.

1) HA(t) =
1

(1− t)4
.

2) A is Noetherian and Auslander-regular of global dimension 4.

3) A is Cohen-Macaulay.

Let Γ denote the point scheme as above and πi : P(V )×P(V ) → P(V ) be the projection

on the ith factor. Set Ei = πi(Γ). Then πi : Γ → Ei is an isomorphism of schemes

for i = 1, 2, E1 = E2, and Γ is the graph of an automorphism τ : E → E.

We follow [13] for the definitions of Auslander-regular and Cohen-Macaulay. Let

R be a ring and M a finitely generated R-module. The grade of M is given by

grade(M) = inf{p | Extp
R(M,R) 6= 0}.
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R is Auslander-regular of global dimension n <∞ if: for every p ≥ 0, every submodule

N of Extp
R(M,R) has grade(N) ≥ p. R is Cohen-Macaulay if for every nonzero finitely

generated module M ,

GKdimM + grade(M) = GKdimA.

An interesting fact about the point scheme is that it parametrizes the point mod-

ules which we define next.

Definition II.1.9. A point module P of A is a cyclic, graded, A-module which is

generated in degree 0 and has Hilbert series HP (t) =
1

1− t
.

Given (p, τ(p)) ∈ Γ or equivalently p ∈ E we (following [18]) define a point module

M(p) as follows. Identify P3 with P(A1) and choose a nondegenerate symmetric

bilinear form on A1. Then p ∈ P3 defines p⊥ ⊂ A1. Let M(p) = A/p⊥A, then P is

a point module by [18]. Conversely given a point module P , we may define a point

(p, τ(p)) ∈ Γ by the following. Let p = (AnnA1 P )⊥ then (p, τ(p)) ∈ Γ. It follows

that the action of τ on E induces an action of τ on the point modules given by

τ.P = P [−1]≥0.

II.2. Algebras as modules over their centers.

We now wish to prove some general results which will enable us to conclude that

all of the examples we construct in III (and in fact all known examples) of generic

quantum P3’s are finitely generated modules over their centers.
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The following result is completely well known and standard but for lack of a good

reference we include the statement and its proof. It is the analogue of the NAK

lemma in the category of graded modules.

Lemma II.2.1. Let R be an N-graded commutative ring and let I be a homogeneous

ideal generated by elements of strictly positive degree. Suppose M is a Z-graded R-

module with IM = M and Mn = 0 for all n << 0. Then M = 0.

Proof. Choose j ∈ Z with Mi = 0 for all i < j. Then Mj = (IM)j = 0 where

the second equality follows from the fact that I is generated in positive degree and

M<j = 0. By induction M = 0.

Lemma II.2.2. Let R be an N-graded commutative ring and q ∈ Rd, d > 0. Suppose

M is a Z-graded, bounded below R-module with M/qM finitely generated as an R/qR-

module. Then M is a finitely generated R-module.

Proof. Let m̄1, . . . , m̄n be homogeneous generators of M/qM over R/qR. Choose

homogeneous preimages m1, . . . ,mn of the m̄i in M and define M ′ =
∑

i

Rmi ≤ M ,

and N = M/M ′. Then qN =
qM +M ′

M ′ =
M

M ′ = N . Then II.2.1 gives N = 0.

Proposition II.2.3. Let k be a field, A an N-graded k-algebra, and Z a graded

central subalgebra. Let q1, . . . , qn ∈ Z be central homogeneous elements of positive

degree with A/(q1, . . . , qn)A a finitely generated Z/(q1, . . . , qn)Z-module. Then A is a

finitely generated Z-module.
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Proof. Induct on n. For the case n = 1 let M = A/qA. Then M is a bounded below,

finitely generated Z/qZ module so II.2.2 implies A is a finitely generated Z-module.

Now assume the result for n ≥ 1, and suppose q1, . . . , qn+1 are homogeneous

central elements of positive degree in Z with A/(q1, . . . , qn+1)A a finitely generated

Z/(q1, . . . , qn+1)Z-module. By the n = 1 case A/(q1, . . . , qn)A is finitely generated

over Z/(q1, . . . , qn)Z and by induction, A is finite over Z.

The existence of a central regular sequence in an algebra A gives extremely pow-

erful information about the structure of A as a module over its center Z(A). We have

the following theorem.

Theorem II.2.4. Let A be a finitely generated N-graded k-algebra with HA(t) =

p(t)

(1− t)n
, with p(t) ∈ k[t] and n ∈ N. Suppose that a1, . . . , an is a regular sequence of

homogeneous elements of positive degree which are all central. Let A′ = A/(a1, . . . , an)

and let Z(A) denote the center of A. Then:

1) A is a finitely generated module over Z(A).

2) C := k[a1, . . . an] is a weighted polynomial ring.

3) A′ is a finite-dimensional ring and A is a free C-module of rank dimk A
′.

Proof. Since C ⊂ Z(A), 1) follows from 3). We prove 3) first. Let di = deg ai for

1 ≤ i ≤ n. By II.1.5 we have

HA′(t) =
n∏

i=1

(1− tdi)HA(t).
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From the hypothesis on the Hilbert series of A, it follows that r = HA′(1) <∞. So A′

is a finite-dimensional k-algebra. Let r = dimk A
′. By II.2.3, A is a finitely generated

C-module. We will show A is free of rank r after we prove 2).

Since A is finitely generated over C we know that GKdimC = GKdimA = n. Let

R = k[x1, . . . xn] be the weighted polynomial ring on n-variables where deg xi = di,

1 ≤ i ≤ n. It is well known that R is GK-critical, [11]. Let π : R � C be the canonical

projection map. Since GKdimC = GKdimR = n and since R is GK-critical we must

have ker π = 0. Therefore C ∼= R. This completes the proof of 2).

We now show A is free over C of rank r. Choose a homogeneous basis v1, . . . , vr

for A′ as a k-vector space. The proof of II.2.2 shows that if we choose homogeneous

preimages of v1, . . . vr say u1, . . . ur in A then the ui generate A over C. Let V be the

k-span of u1, . . . , ur then

HV (t) = HA′(t) =
n∏

i=1

(1− tdi)HA(t).

Now consider the multiplication map m : V ⊗k C → A. Then m is surjective and

HV⊗kC = HV ·HC =
n∏

i=1

(1− tdi)HA(t) · 1∏n
i=1(1− tdi)

= HA.

Hence m is an isomorphism and so A is a free C-module of rank r.

The following theorem, combined with II.2.4, will enable us to prove that the

quantum P3’s, which we construct next, are all Noetherian domains. We include the

statement of the theorem for convenience and because it is a beautiful result. It is

due to Artin, Tate, and Van den Bergh, [4].
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Theorem II.2.5. [4] Let A be an AS-regular algebra of dimension d ≤ 4. If A is

Noetherian and GKdimA = d then A is a domain.
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CHAPTER III

EXAMPLES OF GENERIC QUANTUM P3’s.

III.1. The Shelton-Tingey algebra and its twists.

One of the main goals of this thesis is to study the properties exhibited by generic

quantum P3’s. The first example of a generic regular algebra of dimension 4 which is

not a Clifford algebra is the following example constructed by Shelton-Tingey [17].

Let i denote a square root of -1 in the algebraically closed field k. Let [a1, a2, a3, a4]

denote homogeneous coordinates on P3.

Theorem III.1.1. [17] Let A be the k-algebra with generators x1, x2, x3, x4 and re-

lations

r1 = x3 ⊗ x1 − x1 ⊗ x3 + x2 ⊗ x2 r2 = ix4 ⊗ x1 + x1 ⊗ x4

r3 = x4 ⊗ x2 − x2 ⊗ x4 + x3 ⊗ x3 r4 = ix3 ⊗ x2 + x2 ⊗ x3

r5 = x1 ⊗ x1 − x3 ⊗ x3 r6 = x2 ⊗ x2 − x4 ⊗ x4

Then A is a generic quantum P3 which is a Noetherian domain and whose point

scheme Γ consists of 20 distinct points. The points are e1 = [1, 0, 0, 0], e2 = [0, 1, 0, 0],
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e3 = [0, 0, 1, 0], e4 = [0, 0, 0, 1], and 16 points of the form [1, a2, a3, a4] where:

1− 4a4
4 + a8

4 = 0

a2
2 − a2

4 − 4ia2a
3
4 + ia2a

7
4 = 0

a3 = 8ia2
4 − 15a2a

3
4 + 2ia6

4 − 4a2a
7
4

The automorphism τ on E is given by τ(e1) = e2, τ(e2) = e1, τ(e3) = e4, τ(e4) = e3,

and τ([1, a2, a3, a4]) = [1, ia2/a
2
3, 1/a3,−ia4].

For the rest of this section we will denote by A the above example.

One would like to understand A better by putting it into a larger family. One

way of doing this is to compute its graded twists. Given an N-graded algebra B and

a graded automorphism σ of B, one forms the right graded twist (Bσ, ∗) as follows.

As graded vector spaces Bσ = B, but we twist the multiplication via:

a ∗ b = abσ
k

for a ∈ Bk, b ∈ Bl. In [31], J. Zhang proves that twisting does not change the repre-

sentation theory, that is the categories Gr Mod(Bσ) and Gr Mod(B) are equivalent.

Thus the scheme E is a twisting invariant. However, as will be demonstrated by the

examples, the orbit structure of the automorphism τ is not an invariant. That is, the

point scheme Γ is not a twisting invariant.

We also note that the center of an algebra is not a twist invariant. Furthermore

the property of being “finite over center” is not a twist invariant.
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We wish to find the graded automorphisms of A so that we can examine the twists

of A. There is an action of k∗ on AutGr(A) by defining (λ.ϕ)(a) = ϕ(λa) for λ ∈ k∗,

ϕ ∈ AutGr(A), and a ∈ A. Note that if λ ∈ k∗ and ϕ ∈ AutGr(A) then Aϕ ∼= Aλϕ.

So to determine all twists we need only compute AutGr(A)/k∗. We note that k∗ is a

normal subgroup of AutGr(A) so that AutGr(A)/k∗ is a group.

Definition III.1.2. Suppose σ ∈ AutGr(A) and let M be a right A-module. Define

the right A-module σ∗M via:

• σ∗M = M as sets

• m.x = mσ(x) for m ∈ σ∗M and x ∈ A.

Let P be a point module and σ ∈ AutGr(A). As σ is an automorphism, σ∗P is

cyclic and generated in degree 0. Since σ is graded, the Hilbert series of σ∗P is
1

1− t
.

So σ∗P is a point module.

We also have an action of AutGr(A)/k∗ on P3 by identifying P(A1) and P3. So

by restriction, we have an action of AutGr(A)/k∗ on E. If M(p) is the point module

corresponding to p ∈ E then σ∗M(p) corresponds to the point σ−1(p).

Lemma III.1.3. Let σ ∈ AutGr(A)/k∗ and τ the automorphism of E. Then the

actions of σ and τ on the set of point modules commute.

Proof. Let P be a point module. Then τ.σ∗(P ) = (σ∗P )[−1] = σ∗(P [−1]) = σ∗(τ.P ).
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Notice that the actions of σ and τ also commute on the set of closed points of E.

We now have the following result.

Lemma III.1.4. Let (ei, ej) ∈ Γ be one of the points for A as given in III.1.1. Then

σ(ei, ej) is one of the pairs (e1, e2), (e2, e1), (e3, e4), (e4, e3).

Proof. From III.1.3 we know that τ(σ(ei, ej)) = σ(τ(ei, ej)). If we apply τ again, we

see that σ((ei, ej)) has order 2 with respect to τ . Since the pairs (e1, e2), (e2, e1),

(e3, e4), (e4, e3) are all the elements of Γ of order 2 with respect to τ , the result

follows.

Proposition III.1.5. Let A be the Shelton-Tingey example. Then AutGr(A)/k∗ ∼= Z8

with generator

ρ =



0 −i 0 0

−1 0 0 0

0 0 0 i

0 0 1 0


.

Proof. Let us first write down the conditions for an element r ∈ T (V ∗)2 to be in

the span of the defining relations r1, . . . , r6. Consider the ri as 4 x 4 matrices by

identifying
∑
i,j

aijxi ⊗ xj ↔ A = (aij), aij ∈ k.
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Let r = ar1 + br2 + cr3 + dr4 + er5 + fr6. Then

r =



e 0 −a b

0 a+ f d −c

a id c− e 0

ib c 0 −f


.

So a 4 x 4 matrix A = (aij) is in the span of the relations if and only if:

a12 = 0 a21 = 0 a34 = 0 a43 = 0 a13 = −a31

a24 = −a42 a14 = −ia41 a23 = −ia32 a22 = a31 − a44 a33 = a42 − a11

Suppose σ ∈ AutGr(A)/k∗, then σ is determined by an invertible linear map on A1

modulo scalars, in other words by an element of PGl(A1). By III.1.4 we may assume

σ(e1, e2) = (ei, ej) where (i, j) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)}. We wish to rule out the

cases (i, j) = (3, 4) and (i, j) = (4, 3).

Suppose that (i, j) = (3, 4). There are two possibilities for σ(e3, e4). Either (i)

σ(e3, e4) = (e1, e2) or (ii) σ(e3, e4) = (e2, e1). Suppose (i) σ(e3, e4) = (e1, e2) and

consider the action of σ on the relation f = ix3x2 + x2x3. Modulo the action of

k∗, we may assume σ(x3) = x1, and σ(x2) = ax4, for some a ∈ k∗. Then σ(f) =

a(ix1x4 + x4x1) which is not in the span of the relations. Suppose (ii) σ(e3, e4) =

(e2, e1). Then we may assume σ(x2) = x4 and σ(x3) = bx2 for some b ∈ k∗. Then

σ(f) = b(ix2x4 + x4x2) which is not in the span of the relations. Hence the case

(i, j) = (3, 4) is not possible.

An analogous argument shows that the case (i, j) = (4, 3) is impossible.
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We now wish to rule out the cases where one of (e1, e2) and (e3, e4) is fixed while

the other pair is transposed.

Suppose that σ(e1, e2) = (e1, e2) and σ(e3, e4) = (e4, e3). We may assume that

σ(x1) = x1, σ(x2) = ax2 and σ(x3) = bx4 for a, b ∈ k∗. Then σ(x3x1 − x1x3 + x2
2) =

bx4x1 − bx1x4 + ax2
2 which is not in the span of the relations. A similar argument

shows that the case σ(e1, e2) = (e2, e1), σ(e3, e4) = (e3, e4) is impossible.

We now show that the remaining cases

1. σ(e1, e2) = (e1, e2), σ(e3, e4) = (e3, e4), and

2. σ(e1, e2) = (e2, e1), σ(e3, e4) = (e4, e3)

are possible.

Consider the diagonal case σ(e1, e2) = (e1, e2), σ(e3, e4) = (e3, e4). Assume

σ(x4) = x4, σ(x1) = ax1, σ(x2) = bx2, σ(x3) = cx3 for some a, b, c ∈ k∗. Then

applying σ to the relations we have

acx3x1 − acx1x3 + b2x2
2 a(ix4x1 + x1x4)

bx4x2 − bx2x4 + c2x2
3 bc(ix3x2 + x2x3)

a2x2
1 − c2x2

3 b2x2
2 − x2

4

It immediately follows that b2 = 1; hence ac = 1. So a2 = ±1. Now consider the 4
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possibilities for a.

a = 1 ⇒ c = 1 ⇒ b = 1

a = −1 ⇒ c = −1 ⇒ b = 1

a = i⇒ c = −i⇒ b = −1

a = −i⇒ c = i⇒ b = −1

This yields 4 diagonal matrices. The case σ(e1, e2) = (e2, e1), σ(e3, e4) = (e4, e3)

is exactly analogous to the diagonal case and yields 4 automorphisms including the

matrix

ρ =



0 −i 0 0

−1 0 0 0

0 0 0 i

0 0 1 0


.

Now ρ has order 8 and since we have exactly 8 elements in PGl(A1) the result follows.

We record the 8 automorphisms in AutGr(A)/k∗ in the following definition. An

element of AutGr(A)/k∗ is uniquely determined by an element of PGl(A1). We fix the

basis {x1, x2, x3, x4} for A1, and let Ei,j, 1 ≤ i, j ≤ n denote the elementary matrix

units.
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Definition III.1.6. The elements of AutGr(A)/k∗ are given by the identity, I, and

d1 = −E1,1 + E2,2 − E3,3 + E4,4 d2 = −iE1,1 − E2,2 + iE3,3 + E4,4

d3 = iE1,1 − E2,2 − iE3,3 + E4,4 s1 = E1,2 + E2,1 + E3,4 + E4,3

s2 = −E1,2 + E2,1 − E3,4 + E4,3 s3 = iE1,2 − E2,1 − iE3,4 + E4,3

s4 = −iE1,2 − E2,1 + iE3,4 + E4,3

We now write down the generators and relations for the twists of A for the fixed

basis {x1, x2, x3, x4} of A1. Note that if

4∑
i=1

λi ⊗ xi, λi ∈ A1

is a quadratic relation of A then

4∑
i=1

λσ
i ⊗ xi

is a quadratic relation in Aσ.

The following give the relations for Aσ, σ ∈ AutGr(A)/k∗ for the fixed basis

{x1, x2, x3, x4} of Aσ
1 .

Example III.1.7. Ad1 :

r1 = −x3 ⊗ x1 + x1 ⊗ x3 + x2 ⊗ x2 r2 = ix4 ⊗ x1 − x1 ⊗ x4

r3 = x4 ⊗ x2 − x2 ⊗ x4 − x3 ⊗ x3 r4 = −ix3 ⊗ x2 + x2 ⊗ x3

r5 = −x1 ⊗ x1 + x3 ⊗ x3 r6 = x2 ⊗ x2 − x4 ⊗ x4
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Example III.1.8. Ad2 :

r1 = ix3 ⊗ x1 + ix1 ⊗ x3 − x2 ⊗ x2 r2 = ix4 ⊗ x1 − ix1 ⊗ x4

r3 = x4 ⊗ x2 + x2 ⊗ x4 + ix3 ⊗ x3 r4 = −x3 ⊗ x2 − x2 ⊗ x3

r5 = −ix1 ⊗ x1 − ix3 ⊗ x3 r6 = −x2 ⊗ x2 − x4 ⊗ x4

Example III.1.9. Ad3 :

r1 = −ix3 ⊗ x1 − ix1 ⊗ x3 − x2 ⊗ x2 r2 = ix4 ⊗ x1 + ix1 ⊗ x4

r3 = x4 ⊗ x2 + x2 ⊗ x4 − ix3 ⊗ x3 r4 = x3 ⊗ x2 − x2 ⊗ x3

r5 = ix1 ⊗ x1 + ix3 ⊗ x3 r6 = −x2 ⊗ x2 − x4 ⊗ x4

Example III.1.10. As1 :

r1 = x4 ⊗ x1 − x2 ⊗ x3 + x1 ⊗ x2 r2 = ix3 ⊗ x1 + x2 ⊗ x4

r3 = x3 ⊗ x2 − x1 ⊗ x4 + x4 ⊗ x3 r4 = ix4 ⊗ x2 + x1 ⊗ x3

r5 = x2 ⊗ x1 − x4 ⊗ x3 r6 = x1 ⊗ x2 − x3 ⊗ x4

Example III.1.11. As2 :

r1 = x4 ⊗ x1 − x2 ⊗ x3 − x1 ⊗ x2 r2 = −ix3 ⊗ x1 + x2 ⊗ x4

r3 = −x3 ⊗ x2 + x1 ⊗ x4 + x4 ⊗ x3 r4 = ix4 ⊗ x2 − x1 ⊗ x3

r5 = x2 ⊗ x1 − x4 ⊗ x3 r6 = −x1 ⊗ x2 + x3 ⊗ x4
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Example III.1.12. As3 :

r1 = x4 ⊗ x1 + x2 ⊗ x3 + ix1 ⊗ x2 r2 = x3 ⊗ x1 − x2 ⊗ x4

r3 = −ix3 ⊗ x2 − ix1 ⊗ x4 + x4 ⊗ x3 r4 = ix4 ⊗ x2 − ix1 ⊗ x3

r5 = −x2 ⊗ x1 − x4 ⊗ x3 r6 = ix1 ⊗ x2 + ix3 ⊗ x4

Example III.1.13. As4 :

r1 = x4 ⊗ x1 + x2 ⊗ x3 − ix1 ⊗ x2 r2 = −x3 ⊗ x1 − x2 ⊗ x4

r3 = ix3 ⊗ x2 + ix1 ⊗ x4 + x4 ⊗ x3 r4 = ix4 ⊗ x2 − ix1 ⊗ x3

r5 = −x2 ⊗ x1 − x4 ⊗ x3 r6 = −ix1 ⊗ x2 − ix3 ⊗ x4

We now prove that these 8 examples are not Clifford algebras. From this it

immediately follows that the original example is not a twist of a Clifford algebra. For

if A was a twist of a Clifford algebra say R, then R would be a twist of A. Recall

that if R is a Clifford algebra over a field k with linear generators x1, . . . , xn then the

center of R is the polynomial ring k[x2
1, . . . , x

2
n], see [12].

Theorem III.1.14. For the examples Aσ above, let Zσ denote the center of Aσ.

1) For Aσ, σ ∈ {I, d1, s1, s2, s3, s4}, we have Zσ
2 = 0.

2) For Aσ, σ ∈ {d2, d3}, we have Zσ
2 = Spank{x2

1, x
2
2}.

Proof. Since Aσ is generated by x1, x2, x3, x4, to compute the center in degree 2 one

needs to see when a generic element in the 10-dimensional space Aσ
2 commutes with
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the xi’s. This is routine but tedious. The program AFFINE, written by Schelter, is

used to do the calculations.

Corollary III.1.15. Let Aσ be as above.

1) Aσ is not a Clifford algebra for all σ ∈ AutGr(A)/k∗.

2) The original algebra A is not a twist of a Clifford algebra.

Proof. As noted above, a Clifford algebra on 4 linear generators has center which is

a polynomial ring on the squares of the generators. This is not the case for Aσ by

III.1.14.

We next turn to results about the point schemes (E, τ) of these twists. As noted

above, twisting does not change the points of E, but does change the automorphism

τ of E.

Definition III.1.16. Let B be an N-graded k-algebra and let σ ∈ AutGrB. Let Bσ

denote the right graded twist of B by σ. Let M be a graded right B-module. Define

a graded right Bσ module Mσ via:

• Mσ = M as graded vector spaces

• mi.x = mix
σi

for mi ∈Mσ
i and x ∈ Bσ.

Note that if P is a point module, then P σ is also a point module.
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Let R = T (V ∗)/I be a quantum P3 satisfying the hypotheses of II.1.8 and let

σ ∈ AutGrR. Let Γ denote the point scheme of R. Then Γ is the graph of an

automorphism τ : E → E for some E ⊂ P(V ). Now we want to see what happens to

Γ and τ when we twist by σ. We have:

Proposition III.1.17. Let R, σ, Γ, E, and τ be as in the previous paragraph. Let

Γσ denote the point scheme of Rσ. Then Γσ is the graph of σ−1τ : E → E.

Proof. Let P = v0R be the point module for R corresponding to (p, τ(p)) ∈ Γ. Let P σ

denote the twist of P as in III.1.16. Let (p′, q′) ∈ Γσ denote the point corresponding

to P σ. Since twisting does not change the action in degree 0, we have p = p′. Choose

0 6= v1 ∈ P1, 0 6= vσ
1 ∈ P σ

1 . Then

q′ = (Ann(vσ
1 )⊥

= σ−1(Ann(v1))
⊥)

= σ−1τ(p)

This completes the proof.

We now make some remarks about the computation of the point scheme Γ and

the automorphism τ . Suppose we are given a quadratic relation

∑
i,j

cijxi ⊗ xj, cij ∈ k∗.

This defines a 2-form on P(V ) × P(V ). We denote coordinates on the respective

factors of P(V )× P(V ) as [a1, a2, a3, a4] and [b1, b2, b3, b4]. A satisfies the hypotheses



35

of II.1.8 so the point scheme Γ is the graph of τ . The algebras Aσ have reduced point

schemes since they have the maximal number of points, 20. Hence to compute τ it

suffices to find formulas for the bi’s in terms of the ai’s. The following result is a

straightforward computation.

Theorem III.1.18. Let Aσ be one of the twists of A. Let τ ′ denote the automorphism

giving the graph of Γσ.

1) Let σ = d1. Then τ ′ is given by τ ′(e1) = e2, τ
′(e2) = e1, τ

′(e3) = e4, τ
′(e4) = e3

and τ ′([1, a2, a3, a4]) = [1,
−ia2

a2
3

,
1

a3

, ia4].

2) Let σ ∈ {d2, d3}. Then τ ′ is given by τ ′(e1) = e2, τ
′(e2) = e1, τ

′(e3) = e4,

τ ′(e4) = e3 and τ ′([1, a2, a3, a4]) = [1,
a2

a2
3

,
−1

a3

, a4].

3) Let σ = s1. Then τ ′ is given by τ ′(ei) = ei, for i = 1, 2, 3, 4 and τ([1, a2, a3, a4]) =

[1,
−ia2

3

a2

,
a2

a4

,
−ia3

a2

].

4) Let σ = s2. Then τ ′ is given by τ ′(ei) = ei, for i = 1, 2, 3, 4 and τ([1, a2, a3, a4]) =

[1,
ia2

3

a2

,
a2

a4

,
ia3

a2

].

5) Let σ = s3. Then τ ′ is given by τ ′(ei) = ei, for i = 1, 2, 3, 4 and τ([1, a2, a3, a4]) =

[1,
−a2

3

a2

,
−a2

a4

,
a3

a2

].

6) Let σ = s4. Then τ ′ is given by τ(ei) = ei, for i = 1, 2, 3, 4 and τ([1, a2, a3, a4]) =

[1,
a2

3

a2

,
−a2

a4

,
−a3

a2

].
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Note that for both of the twists Ad2 , Ad3 the orbit structure of τ ′ is given by 10

orbits of order 2, whereas for As4 the orbit structure is given by 4 orbits of order 1

and 4 orbits of order 4. This contrasts with the orbit structure of τ in the original

example A and shows that twisting can change the orbit structure.

We now wish to prove that A and its twists are all finite modules over their

centers. In order to apply II.2.4, we first need to find central regular sequences in

these examples. We have the following.

Theorem III.1.19. Let A denote the Shelton-Tingey example, then the twists of A

have central regular sequences as follows:

1) In A and Ad1 we have the central regular sequence x4
1, x

4
2, (x1x2)

4 + (x2x1)
4,

(x3x4)
4 + (x4x3)

4.

2) In Ad2 and Ad3 we have the central regular sequence x2
1, x

2
2, (x1x2)

2 + (x2x1)
2,

(x3x4)
2 + (x4x3)

2.

3) In As1 and As2 we have the central regular sequence x4
1 − x4

2, x
4
4 − x4

3, (x1x2)
2 +

(x2x1)
2, x2x1x

2
2x

2
4+i(x2x1)

2x2x3+ix1x2x
2
2x

2
3+i(x1x2)

2x1x4+ix
2
1x

2
2x2x3−x2

1x2x1x
2
3−

ix2
1x2x1x

2
2 + ix2

1x1x2x
2
4 + ix3

1x
2
2x4.

4) In As3 and As4 we have the central regular sequence x4
1 + x4

2, x
4
3 + x4

4, (x1x2)
2 +

(x2x1)
2, x2x1x

2
2x

2
4−i(x2x1)

2x2x3+x1x2x
2
2x

2
3+i(x1x2)

2x1x4−ix2
1x

2
2x2x3+x

2
1x2x1x

2
3+

x2
1x2x1x

2
2 + x2

1x1x2x
2
4 + ix2

1x1x
2
2x4.
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Proof. We will prove 2) for the algebra Ad3 . The other cases are similar and can be

checked using the computer program AFFINE. Let’s first recall the relations of Ad3 .

r1 = −ix3 ⊗ x1 − ix1 ⊗ x3 − x2 ⊗ x2 r2 = ix4 ⊗ x1 + ix1 ⊗ x4

r3 = x4 ⊗ x2 + x2 ⊗ x4 − ix3 ⊗ x3 r4 = x3 ⊗ x2 − x2 ⊗ x3

r5 = ix1 ⊗ x1 + ix3 ⊗ x3 r6 = −x2 ⊗ x2 − x4 ⊗ x4

In this proof we will use B to denote Ad3 . Let Ω1 = (x1x2)
2 + (x2x1)

2 and Ω2 =

(x3x4)
2 + (x4x3)

2. Let s̄ be the sequence x2
1, x

2
2,Ω1,Ω2. We will first prove that the

elements x2
1, x

2
2,Ω1,Ω2 are central in B. To prove an element a ∈ B is central, it

suffices to check that a commutes with the generators xi, 1 ≤ i ≤ 4. For x2
1 we have

x2
1x2 = −x2

3(x2) = −x2x
2
3 = x2x

2
1

x2
1x3 = −x2

3x3 = x3x
2
1

x2
1x4 = −x1x4x1 = x4x

2
1

Thus x2
1 is central. The computation showing that x2

2 is central is similar. For Ω1 we

have:

Ω1x1 = (x1x2)
2x1 + (x2x1)

2x1 = x1(x2x1)
2 + x1(x1x2)

2

Ω1x2 = (x1x2)
2x2 + (x2x1)

2x2 = x2(x2x1)
2 + x2(x1x2)

2
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Ω1x3 = (x1x2)
2x3 + (x2x1)

2x3 = x1x2x1x3x2 + x2x1x2(−x3x1 + ix2
2)

= x1x2(−x3x1 + ix2
2)x2 − x2x1x3x2x1 + ix2x1x

3
2

= −x1x3x2x1x2 + ix1x
4
2 − x2(−x3x1 + ix2

2)x2x1 + ix2x1x
3
2

= (x3x1 − ix2
2)x2x1x2 + ix1x

4
2 + x3x2x1x2x1 − ix4

2x1 + ix2x1x
3
2

= x3(x1x2)
2 + x3(x2x1)

2

Ω1x4 = (x1x2)
2x4 + (x2x1)

2x4 = x1x2x1(−x4x2 + ix2
3)− x2x1x2x4x1

= x1x2x4x1x2 + ix1x2x1x
2
3 − x2x1(−x4x2 + ix2

3)x1

= x1(−x4x2 + ix2
3)x1x2 + ix1x2x1x

2
3 − x2x4x1x

2
2x1 − ix2x1x

2
3x1

= x4x1x2x1x2 + ix1x
2
3x1x2 + ix1x2x1x

2
3 − (−x4x2 + ix2

3)x1x2x1 − ix2x1x
2
3x1

= x4(x1x2)
2 + x4(x2x1)

2

The proof that Ω2 is central is similar to that of Ω1.

We now show that s̄ is regular. First define B′ = B/(x2
1, x

2
2). Then B′ has relations:

x3x1 = −x1x3 x4x1 = −x1x4 x4x2 = −x2x4 x3x2 = x2x3

x2
1 = 0 x2

2 = 0 x2
3 = 0 x2

4 = 0

Then B′ is graded and we want to consider a monomial basis. Let l(m) denote the

length of a monomial m as a word in x1, x2, x3, x4. Let j ∈ N and define Sj
1 to be the

set of monomials in x1, x2 of length j. Similarly let Sj
2 denote the set of monomials

in x3, x4 of length j. Notice that since the squares of the generators are zero in
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B′, Sj
1 = {x1x2 · · · , x2x1 · · · } and Sj

2 = {x3x4 · · · , x4x3 · · · } The notation xixk · · · is

short for the string of length j obtained by alternating xi and xk. Let Si =
⋃
j≥0

Sj
i for

i = 1, 2.

From the relations of B′, we see that any monomial m in x1, x2, x3, x4 can be

written uniquely as m = m1m2 where m1 ∈ S1 and m2 ∈ S2. We now compute

dimk B
′
n for fixed n ∈ N. A monomial basis for B′

n is given by

Bn = {m = m1m2 | l(m) = n,m1 ∈ S1,m2 ∈ S2}.

Note B0 = {1}, and B1 = {x1, x2, x3, x4}. Suppose n ≥ 2 and let m = m1m2 ∈

Bn. There are two choices for m1 ∈ S1 with 1 ≤ l(m1) ≤ n − 1 and for a fixed

choice of m1 there are two possibilities for m2 ∈ S2. That is, fixing the length

of m1, we get the 4 monomials x1x2 · · ·x3x4 · · · , x1x2 · · ·x4x3 · · · , x2x1 · · ·x3x4 · · · ,

and x2x1 · · ·x4x3 · · · . If l(m1) ∈ {0, n} we get the 4 monomials x3x4 · · · , x4x3 · · · ,

x1x2 · · · , and x2x1 · · · . Hence Bn contains exactly 4n monomials for n ≥ 1. Therefore

HB′(t) = 1 +
∑
n≥1

(4n)tn =
(1− t2)2

(1− t4)
. By II.1.5, (x2

1, x
2
2) is a regular sequence.

We now show that Ω1 is regular in B′. Since we’ve shown Ω1 is central, we

need only check that Ω1 is left regular. Also since B′ is graded it suffices to show:

Ω1f = 0 ⇒ f = 0 for f homogeneous.

Let f ∈ B′
n, n ≥ 1. We order Bn as

{b1, . . . , b2n−1, b2n, . . . b4n−2, b4n−1, b4n}

where b1, . . . , b2n−1 begin in x1, b2n, . . . , b4n−2 begin in x2, and b4n−1, b4n begin in x3, x4
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respectively. Write f in terms of the basis Bn as

f =
2n−1∑
i=1

cibi +
4n−2∑
i=2n

cibi +
4n∑

i=4n−1

cibi,

for some c1 . . . c4n ∈ k. Suppose Ω1f = 0. Then

Ω1f = ((x1x2)
2 + (x2x1)

2)(
2n−1∑
i=1

cibi +
4n−2∑
i=2n

cibi +
4n∑

i=4n−1

cibi)

=
2n−1∑
i=1

ci(x1x2)
2bi +

4n−2∑
i=2n

ci(x2x1)
2bi + (

4n∑
i=4n−1

ciΩ1bi)

= 0

The last 2 lines give an equation in B′
n+2 which is expressed in terms of the basis

Bn+2. Hence c1 . . . , c4n are all zero and we get f = 0 as required.

To prove Ω2 is regular modulo (x2
1, x

2
2,Ω1), we define B′′ = B′/Ω1. In B′′ we

have the relation (x1x2)
2 = −(x2x1)

2. We can find a canonical basis of monomials

for B′′
n, where a monomial has the canonical form (x1x2 · · · )lm′ with l ∈ N and m′ a

monomial in x3, x4. Since we have proved Ω2 is central, it suffices to prove Ω2 is right

regular. This is done with an analogous argument as above.

So s̄ is a regular sequence of central elements, and this completes the proof.

We now prove that the Shelton-Tingey example A and all of its right graded twists

are finite modules over their centers.

Theorem III.1.20. Let A denote the Shelton-Tingey example and let σ be one of
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the 8 automorphisms of A as given in III.1.5. Then Aσ is a finite module over its

center. More precisely we have:

1) The algebras A and Ad1 are free modules over the central subalgebras C = k[x4
1, x

4
2, (x1x2)

4+

(x2x1)
4, (x3x4)

4 + (x4x3)
4] of rank 1024.

2) The algebras Ad2 and Ad3 are free modules over the central subalgebras C =

k[x2
1, x

2
2, (x1x2)

2 + (x2x1)
2, (x3x4)

2 + (x4x3)
2] of rank 64.

3) The algebras As1 and As2 are free modules over the central subalgebras C = k[x4
1−

x4
2, x

4
4−x4

3, (x1x2)
2 +(x2x1)

2, x2x1x
2
2x

2
4 + i(x2x1)

2x2x3 + ix1x2x
2
2x

2
3 + i(x1x2)

2x1x4 +

ix2
1x

2
2x2x3 − x2

1x2x1x
2
3 − ix2

1x2x1x
2
2 + ix2

1x1x2x
2
4 + ix3

1x
2
2x4] of rank 384.

4) The algebras As3 and As4 are free modules over the central subalgebras C = k[x4
1 +

x4
2, x

4
3 +x4

4, (x1x2)
2 +(x2x1)

2, x2x1x
2
2x

2
4− i(x2x1)

2x2x3 +x1x2x
2
2x

2
3 + i(x1x2)

2x1x4−

ix2
1x

2
2x2x3 + x2

1x2x1x
2
3 + x2

1x2x1x
2
2 + x2

1x1x2x
2
4 + ix2

1x1x
2
2x4] of rank 384.

Proof. In each of 1), 2), 3), and 4), the generators of C form central regular sequences

by III.1.19. Then II.2.4 implies that Aσ is finitely generated over its center, and that

Aσ is free over C in each case. Finally, the actual rank is determined by the following.

Suppose q1, q2, q3, q4 are the generators of C with degrees d1, d2, d3, d4 respectively. Let

p(t) = (
4∏

i=1

(1− tdi))HA(t) =

∏4
i=1(1− tdi)

(1− t)4
which is a polynomial in t. Then the rank

is given by p(1). For example in 2. we have p(t) =
(1− t2)2(1− t4)2

(1− t)4
= (1+t)4(1+t2)2

and p(1) = 64. The other computations are analogous.
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III.2. Families of generic quantum P3’s.

To construct other generic examples we first review the notion of Ore extensions.

Let R be a ring, θ ∈ Aut(R) and δ a right θ derivation, that is δ : R→ R is R-linear

with

δ(rs) = δ(r)θ(s) + rδ(s), for r, s ∈ R.

The right Ore extension with respect to this data is the ring R[z; θ, δ] whose elements

are polynomials
∑

k

zkrk in the indeterminate z with right coefficients rk ∈ R subject

to the relations

rz = zθ(r) + δ(r) for r ∈ R.

The usefulness of this construction for our purposes is as follows. Let R be a

quantum P2 and consider the Ore extensions of R by a degree one indeterminate z

via a graded automorphism and a degree 2 graded θ-derivation δ. These extensions

are all quantum P3’s [6]. Given that the quantum P2’s are classified, we can start

with an algebra R which has many quadratic normal elements (e.g. a skew polynomial

ring), form the Ore extension, find a quadratic normal regular sequence q1, q2, q3, q4

and then construct the Koszul dual (R/(q1, q2, q3, q4))
!. This construction yields many

new examples of generic qP3’s. This is what we shall discuss next.

Construction 1

In this subsection we will construct some examples of generic quantum P3’s from

the first homogenized Weyl algebra, A1(k). We define this first.
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Definition III.2.1. The first homogenized Weyl algebra A1(k) is the N-graded k-

algebra presented as

A1(k) =
k〈x, y, z〉

〈[x, z], [y, z], [x, y]− z2〉

where deg(x) = deg(y) = deg(z) = 1 and [a, b] = ab− ba.

Recall that A1(k) is a quantum P2. We now define an automorphism of A1(k) on

A1(k)1 by

θλ =


1 λ 0

0 1 0

0 0 1


where λ ∈ k. To prove that θλ defines an automorphism of A1(k) we need to check

that θλ preserves the span of the relations of A1(k). We have θλ([x, z]) = [x, z],

θλ([y, z]) = λ[x, z] + [y, z], and θλ([x, y]− z2) = [x, y]− z2.

Definition III.2.2. Let R = A1(k)[w; θ] be the right Ore extension of A1(k) by a

degree 1 indeterminate w and the automorphism θλ. Then R has a presentation as

k〈x, y, z, w〉
〈[x, z], [y, z], [x, y]− z2, [x,w], yw − λwx− wy, [z, w]〉

.

Lemma III.2.3. Let α ∈ k∗. Define the sequence s = (z2, xw, x2 +y2, w2−αxy+yz)

of quadratic elements in R. Then s is a normal sequence.

Proof. It is clear from the relations of R that z2 is normal, in fact z is central. Now

consider xw modulo z2. It is clear that xw commutes with x, z, and w in R, so we
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need only consider (xw)y modulo z2. Computing modulo z2, we have

(xw)y = x(yw − λwx)

= (yx+ z2)w − λx(xw)

= (y − λx)(xw)

So xw is normal mod z2.

Now notice that modulo (z2, xw), all of the degree 1 elements commute. So x2+y2

and w2 − αxy + yz are central, hence normal modulo (z2, xw). This completes the

proof.

Lemma III.2.4. Let s be the sequence from III.2.3. Then s is a regular sequence.

Proof. Let R′ = R/(z2, xw, x2 + y2). First notice that R′ is a commutative ring. We

now compute the Hilbert series of R′.

Let Bn for n ≥ 0 denote a monomial basis for R′
n. Then it is not hard to

see that B0 = {1}, B1 = {x, y, z, w}, B2 = {x2, xy, xz, yz, yw, zw,w2} and Bn =

{xn, xn−1y, xn−1z, xn−2yz, ywn−1, zwn−1, yzwn−2, wn}. Therefore we have

HR′(t) = 1 + 4t+ 7t2 +
∑
n≥3

8tn =
(1− t2)3

(1− t)4
.

By II.1.5, (z2, xw, x2 + y2) is a normal regular sequence.

It remains to show that q4 := w2 − αxy + yz is regular in R′. Since R′ is commu-

tative and q4 is homogeneous, it suffices to show that q4 is left regular on R′
n for all

n ≥ 0. Given the monomial basis B =
⋃
n≥0

Bn for R′, this is elementary linear algebra.

This completes the proof.
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By III.2.3 and III.2.4 we know that s is a normal regular sequence in R. We now

have the following theorem.

Theorem III.2.5. Let Sα, α ∈ k∗ be the N-graded k-algebra on 4 degree 1 generators

x1, x2, x3, x4 with relations

r1 = x1 ⊗ x3 + x3 ⊗ x1 r2 = x2 ⊗ x3 + x3 ⊗ x2 − x4 ⊗ x4

r3 = x1 ⊗ x2 + x2 ⊗ x1 + αx4 ⊗ x4 r4 = x2 ⊗ x4 + x4 ⊗ x2

r5 = x3 ⊗ x4 + x4 ⊗ x3 r6 = x1 ⊗ x1 − x2 ⊗ x2

Then Sα is a quantum P3 whose point scheme Γ consists of 5 distinct points given

by p1 = [1, i, 0, 0], p2 = [1,−i, 0, 0], e1, e3, e4 where ei = [0, . . . , 1, . . .] with 1 in the ith

spot. The automorphism τ on these points is given by p1 7→ p2, p2 7→ p1, e1 7→ e4,

e3 7→ e3 and e4 7→ e1.

We note that the change of basis; x1 7→ x1, x2 7→ x2, x3 7→ α−1x3, x4 7→ (
√
α)−1x4

shows that Sα
∼= S1. So that Sα does not depend on α. We set S := S1.

Proof. Consider the algebra R given in III.2.2 and the normal regular sequence s given

in III.2.3. We change notation via x1 = x, x2 = y, x3 = z, x4 = w. Computing the

orthogonal relations to [x2, x3], [x1, x2],−x4x1, [x2, x4], [x3, x4], x
2
3, x1x4, x

2
1 + x2

2, x
2
4 −

x1x2 + x2x3, we get the relations r1, . . . , r6. By II.1.6, S is a quantum P3.

We now compute the point scheme. We have to find the zeroes of the relations

r1, . . . , r6 in P3×P3. We coordinatize P3×P3 by using coordinates [a1, a2, a3, a4] and

[b1, b2, b3, b4] on the first and second factors of P3×P3 respectively. We consider three
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cases based on the decomposition P3 × P3 = (A3 ×A3)∪ (P2 × P3)∪ (P3 × P2) where

A3 × A3 is the affine subvariety given by a1 6= 0, b1 6= 0, P2 × P3 is the subvariety

given by a1 = 0 and P3 × P2 is the subvariety given by b1 = 0.

Case 1: a1 = b1 = 1.

We must solve the following equations:

b3 + a3 = 0 a2b3 + a3b2 − a4b4 = 0 b2 + a2 + a4b4 = 0

a2b4 + a4b2 = 0 a3b4 + a4b3 = 0 1− a2b2 = 0

We have b3 = −a3 and b2 = a−1
2 . Making these substitutions we get

−a2a3 + a3a
−1
2 − a4b4 = 0 a−1

2 + a2 + a4b4 = 0

a2b4 + a4a
−1
2 = 0 a3(b4 − a4) = 0

We can consider two cases: (a) a3 = 0 or (b) b4 = a4. If a3 = 0 then a4b4 = 0 so

a−1
2 + a2 = 0, i.e. a2 = ±i. Also a4 = b4 = 0. This gives the points [1,±i, 0, 0].

If a4 = b4 and a3 6= 0 then a4(a2 + a−1
2 ) = 0. If a4 = 0 then as in the previous

paragraph a2
2 = −1. But then we have a3(a

−1
2 − a2) = 0 so a3 = 0, contradiction.

Otherwise a2 + a−1
2 = 0 so a4b4 = 0. From a2b4 + a4a

−1
2 = 0 we have a4 = 0 which

implies a3 = 0, a contradiction. This concludes Case 1.

Case 2: a1 = 0.

In this case we must solve the equations:

a3b1 = 0 a2b3 + a3b2 − a4b4 = 0 a2b1 + a4b4 = 0

a2b4 + a4b2 = 0 a3b4 + a4b3 = 0 −a2b2 = 0
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There are 4 possibilities to look at:

(a) If a3 = a2 = 0 then we may assume a4 6= 0. So b4 = b2 = b3 = 0 and we have

the solution (e4, e1).

(b) If a3 = b2 = 0 then we have a2b3 − a4b4 = 0, a2b1 + a4b4 = 0, a2b4 = 0, and

a4b3 = 0. If a2 = 0 then we may assume a4 6= 0 and so b4 = b3 = 0. This gives

the solution (e4, e1). If b4 = 0 and a2 6= 0 then b3 = 0. But then b1 6= 0 but this

contradicts a2b1 = 0.

(c) If b1 = a2 = 0 then we have the equations a3b2 − a4b4 = 0, a4b4 = 0, a4b2 = 0,

and a3b4 +a4b3 = 0. If a4 = 0 then we may assume a3 6= 0. Then we have b2 = b4 = 0

which gives the solution (e3, e3). If b2 = 0 and a4 6= 0 then b4 = b3 = 0 and there are

no solutions.

(d) If b1 = b2 = 0 then we have a2b3 − a4b4 = 0, a4b4 = 0, a2b4 = 0, and

a3b4 + a4b3 = 0. If b4 = 0 then b3 6= 0 so a2 = a4 = 0 which gives the solution (e3, e3).

Otherwise b4 6= 0 and then a2 = a4 = a3 = 0 which is not a projective solution. This

concludes Case2.

Case 3: b1 = 0.

By symmetry in the relations r1, . . . ,r6, this case gives the solutions (e1, e4) and

(e3, e3).

Therefore Γ consists of the 5 distinct points p1, p2, e1, e3, e4 and it is clear from the

above analysis that the action of τ is as stated.
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We wish to analyse the algebra S further. In particular we will prove that it is a

Noetherian domain.

Lemma III.2.6. Define the sequence of quadratic regular elements in S by s =

(x1x4 + x4x1, x
2
3, x1x2 + x2x1, x

2
1). Then s is a central regular sequence.

Proof. It is straightforward to check that the elements in s are in fact all central in

S. To prove the sequence is regular we note that S/s is the alternating algebra on 4

linear generators over k so its Hilbert series is (1 + t)4. We are done by II.1.5.

Theorem III.2.7. Let S be as in III.2.5 and s = (x1x4 + x4x1, x
2
3, x1x2 + x2x1, x

2
1).

Let C = k[x1x4 + x4x1, x
2
3, x1x2 + x2x1, x

2
1] and Z denote the center of S. Then:

1) S is a finitely generated module over Z.

2) C is a weighted polynomial ring.

3) S is a free module of rank 16 over C.

Proof. By III.2.6 we know that s is a central regular sequence and HS/s(t) = (1 + t)4

so that dimk S/s = 24 = 16. The rest follows from II.2.4.

Corollary III.2.8. The algebra S is a Noetherian domain.

Proof. From III.2.7 we know that S is a finitely generated free module over the

polynomial subalgebra C. Since C is Noetherian we have that S is Noetherian. So

by II.2.5 we get that S is a domain.
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This concludes the subsection Construction 1.

Construction 2

In this subsection we will construct more examples of generic quantum P3’s. We

start with a skew polynomial ring of global dimension 3 and then form an Ore ex-

tension. This differs from construction 1 in that we use a nontrivial derivation for

the extension. We then find various normal regular sequences and use II.1.6 to build

families of generic quantum P3’s.

Consider the one parameter family of quantum P2’s given by k〈x1, x2, x4〉 with

quadratic relations:

r1 = x1 ⊗ x2 − x2 ⊗ x1 r2 = x1 ⊗ x4 − ζx4 ⊗ x1 r3 = x2 ⊗ x4 − ζx4 ⊗ x2

where ζ ∈ k∗. Denote a member of this family by Rζ . Define the automorphism

θ ∈ Aut(Rζ) given in degree 1 on the basis {x1, x2, x4} as
0 1 0

1 0 0

0 0 ζ−1

 .

Define the θ-derivation δ via the formula

δ = (ax2 + bxy + ay2)(
∂

∂x
− ∂

∂y
)

with a, b ∈ k. This gives a linear action of δ on R1 and we extend δ to R by the

Leibniz rule. Let S = Sa,b,ζ = Ra,b,ζ [x3; θ, δ] be the associated right Ore extension by

the degree one indeterminate x3.
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Then S is generated by x1, x2, x3, x4 with relations

r1 = x1 ⊗ x2 − x2 ⊗ x1

r2 = x1 ⊗ x4 − ζx4 ⊗ x1

r3 = x2 ⊗ x4 − ζx4 ⊗ x2

r4 = x1 ⊗ x3 − x3 ⊗ x2 − ax1 ⊗ x1 − bx1 ⊗ x2 − ax2 ⊗ x2

r5 = x1 ⊗ x3 − x3 ⊗ x1 + x2 ⊗ x3 − x3 ⊗ x2

r6 = x3 ⊗ x4 − ζx4 ⊗ x3.

We constructed the derivation δ so that the generator x3 isn’t normal in S but x2
3 is

normal.

Proposition III.2.9. In the algebra S let q1 = x2
3 and q2 = x2x3− x3x2. Then q1, q2

is a normal regular sequence.

Proof. By construction, q1 is normal. S is Noetherian being an Ore extension of a

Noetherian algebra so by [4][Theorem 3.9], S is a domain. So q1 is regular. It is

straightforward by direct computation to verify that q2 is normal and regular modulo

q1.

In the algebra S/(q1, q2), the monomials in degree 2 are all normal. Recall that a

normal element defines a graded homomorphism. In fact,

Lemma III.2.10. In S/(q1, q2),
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1) The monomials x2
1, x1x2, x

2
2, x1x3 define the automorphisms



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ζ2


.

2) The monomials x1x4, x2x4, x3x4 define the automorphisms



ζ−1 0 0 0

0 ζ−1 0 0

0 0 ζ−1 0

0 0 0 ζ


.

3) The monomial x2
4 defines the automorphism



ζ−2 0 0 0

0 ζ−2 0 0

0 0 ζ−2 0

0 0 0 1


.

Proof. This is a completely straightforward computation. For an element Ω, we write

Ωxi in the form ϕ(xi)Ω for a linear map ϕ : S1 → S1.

Notice that according to the above lemma, when ζ = ±1 many of the monomi-

als define the same automorphism. Hence linear combinations of these monomials

yield normal elements. Let S+, S− denote Sa,b,1, Sa,b,−1 respectively. The following

examples were found by building elements q3, q4 for which the sequence q1, q2, q3, q4 is

normal and regular in S and then finding the Koszul dual S!. For each of the exam-

ples below, we have fixed the elements q1 = x2
3, q2 = x2x3− x3x2. We write down the
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quadratic elements q3, q4 for which q1, q2, q3, q4 give a normal regular sequence. Then

we use II.1.6 to build the example. In the following 2 examples we set c := 1/a.

Example III.2.11. Let A = k〈x1, x2, x3, x4〉 with relations:

r1 = x3 ⊗ x4 + x4 ⊗ x3 + ix1 ⊗ x2 + ix2 ⊗ x1 − ibcx2 ⊗ x2

r2 = x1 ⊗ x4 + x4 ⊗ x1

r3 = x2 ⊗ x4 + x4 ⊗ x2

r4 = x1 ⊗ x3 + x3 ⊗ x1 + cx2 ⊗ x2 + x4 ⊗ x4

r5 = x2 ⊗ x3 + x3 ⊗ x2 − cx2 ⊗ x2

r6 = x1 ⊗ x1 − x2 ⊗ x2.

where bc /∈ {±2}. Then:

1) A is a quantum P3 which is constructed from S+ by the normal regular sequence

q1, q2, q3 = x1x2 − ix3x4, q4 = x1x3 − x2
4.

2) The point scheme Γ consists of 5 distinct points, {p1, . . . p5} and the automor-

phism τ has 2 orbits of order 2 and fixes p5. The points are given by: pi =

([1, a2, a3, 0], [1, a−1
2 ,−a3a

−1
2 , 0]) for i = 1, 2 where a2 satisfies x2 − bcx + 1 and

a3 =
−a2c

a2 − 1
. The points p3, p4 are given by ([1, 1, a3, a4], [1, 1, c− a3,−a4]) where

a2
4 = −2c and 2i− 2a3a4 + a4c− ibc = 0. Finally, p5 = ([0, 0, 1, 0], [0, 0, 1, 0]).

3) A is finite over its center as x2
1, x

2
3, x1x2 + x2x1, x1x3 + x3x1 is a regular sequence

of central elements in A.
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4) A is a Noetherian domain.

Example III.2.12. Let A = k〈x1, x2, x3, x4〉 with relations:

r1 = x1 ⊗ x2 + x2 ⊗ x1 − bcx2 ⊗ x2

r2 = x1 ⊗ x4 − x4 ⊗ x1 + x2 ⊗ x4 − x4 ⊗ x2

r3 = x1 ⊗ x3 + x3 ⊗ x1 + cx2 ⊗ x2

r4 = x2 ⊗ x3 + x3 ⊗ x2 − cx2 ⊗ x2

r5 = x1 ⊗ x1 + x4 ⊗ x4 − x2 ⊗ x2

r6 = x3 ⊗ x4 − x4 ⊗ x3.

where bc /∈ {±2,−1} and c 6= 0. Then:

1) A is a quantum P3 which is constructed from S− by the normal regular sequence

q1, q2, q3 = x1x4 − x2x4, q4 = x2
4 − x2

1.

2) The point scheme Γ consists of 7 distinct points, {p1, . . . p7} and the automor-

phism τ has 3 orbits of order 2 and fixes p7. The points are given by: p1 =

([1, 0, 0, i], [1, 0, 0, i]), p2 = ([1, 0, 0,−i], [1, 0, 0,−i]). The points p3, p4 are given by

([1, a2, a3, 0], [1, a−1
2 ,

−a3

a2

, 0]), where a2 satisfies x2− bcx+ 1 = 0 and a3 =
−a2c

a2 − 1
.

And finally, p5 = ([1,−1, 0, 0], [0, 0, 0, 1]), p6 = ([0, 0, 0, 1], [1,−1, 0, 0]) and p7 =

([0, 0, 1, 0], [0, 0, 1, 0]).

3) A is finite over its center as x2
1, x1x2 + x2x1, x

2
3, (x4x1)

2 + (x1x4)
2 is a regular

sequence of central elements in A.
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4) A is a Noetherian domain.

Statements 1), 2), 3), 4) in Examples III.2.11, III.2.12 are proved as follows. For

statement 1) we need only check that the sequence q1, q2, q3, q4 is a normal regular

sequence. The normality of q1, q2, q3, q4 follows from III.2.9 and III.2.10. To prove

regularity, we show that the Hilbert series of S ′ = S/(q1, q2, q3, q4) is (1 + t)4. Finally

II.1.6 implies A is a quantum P3.

Statement 2) is a computation of the zeroes of the relations in P3 × P3 along the

same lines as in the proof of III.2.5. For statement 3), we need to check that the

given elements c1, c2, c3, c4 are central. It suffices to check that ci commutes with the

generators xj, 1 ≤ j ≤ 4. Then we compute the Hilbert series of A/(c1, c2, c3, c4) and

apply II.1.5.

Finally statement 4) follows since by 3) and II.2.4 we have A Noetherian. Then

by II.2.5, A is a domain.

Recall that when the point scheme Γ of a quantum P3 is finite then Γ consists of

20 points counted with multiplicity. The following theorem gives the multiplicities of

the 7 distinct points in Example III.2.12. We do not know the multiplicities of the

points in Example III.2.11.

Theorem III.2.13. The point scheme Γ consists of 7 distinct points, {p1, . . . p7}

and the automorphism τ has 3 orbits of order 2 and fixes p7. The points are given

by: p1 = ([1, 0, 0, i], [1, 0, 0, i]), p2 = ([1, 0, 0,−i], [1, 0, 0,−i]). The points p3, p4 are

given by ([1, a2, a3, 0], [1, a−1
2 ,

−a3

a2

, 0]), where a2 satisfies x2 − bcx + 1 = 0 and a3 =
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−a2c

a2 − 1
. And finally, p5 = ([1,−1, 0, 0], [0, 0, 0, 1]), p6 = ([0, 0, 0, 1], [1,−1, 0, 0]) and

p7 = ([0, 0, 1, 0], [0, 0, 1, 0]). Let E = π1(Γ) where π1 : P3 × P3 → P3 is the projection

on the first factor. The multiplicities of the points are given by m(p1) = m(p2) =

m(p3) = m(p4) = 2, m(p5) = m(p6) = 3 and m(p7) = 6.

Proof. Let ([a1, a2, a3, a4], [b1, b2, b3, b4]) denote coordinates on P3 × P3 so that the

homogeneous coordinate ring of Γ is C[a1, a2, a3, a4, b1, b2, b3, b4]/J where J is the

ideal generated by the ri(a, b) with ri a relation of A. We first consider the basic

affine open neighborhood U of p7 given by setting a3 = 1, b3 = 1. In the coordinate

ring of U ∩ Γ we have the relations:

a1b2 + a2b1 − bca2b2, a1b4 − a4b1 + a2b4 − a4b2,

a1 + b1 + a2 + b2, a2 + b2 − ca2b2,

a1b1 + a4b4 − a2b2, b4 − a4,

Hence b4 = a4, b1 = −a1 − a2 − b2. Making these substitutions and simplifying we

have:

a1a2 + a2
2 + (a2 − a1 + bca2)b2 = 0 (1)

(a1 + a2)a4 = 0 (2)

a2 + (1− ca2)b2 = 0 (3)

a2
1 + a1a2 − a2

4 + (a1 + a2)b2 = 0 (4)

Let µ =
c

2 + bc
then µ(1) + (3) + µ(4) = 0 yields b2 = −µ((a1 + a2)

2 − a2
4) − a2.

If we substitute this expression for b2 and change variables via x = a1 + a2, y = a2,
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z = a4 then the coordinate ring of E in the affine neighborhood U is given by

k[x, y, z]

(xz, cy2 − µ(1− cy)(x2 − z2), x2 − 2xy − z2 − µx3)
.

This algebra has exactly 3 maximal ideals corresponding to the points p7 and

p3, p4. Let M3, M4 denote the maximal ideals corresponding to the points p3, p4

respectively. Note that x = a1 + a2 is not in Mi, for i = 3, 4. We now localize at x.

Then x becomes a unit so we have z = 0, giving the ring

k[x, y]

(cy2 − µ(1− cy)x2, x(x− 2y − µx2))
.

Again x is invertible so x − 2y − µx2 = 0. So y =
x(1− µx)

2
. Substituting this

expression for y in cy2−µ(1− cy)x2 implies that x2(c−4µ−µ2cx2) is now a relation.

Since x is invertible, we have c− 4µ− µ2cx2 = 0. This leaves us with the semi-local

ring

k[x]

(c− 4µ− µ2cx2 = 0)
.

This is a 2-dimensional ring whose two maximal ideals correspond to the points p3

and p4. Hence m(p3) = m(p4) = 1.

Next we consider the affine open neighborhood V of the points p1, p2 given by

setting a4 = b4 = 1. Notice that V intersects Γ at p1, p2. In the neighborhood V , the
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relations in the coordinate ring of V ∩ Γ are:

a1b2 + a2b1 − bca2b2, (5)

a1 − b1 + a2 − b2, (6)

a1b3 + a3b1 + ca2b2, (7)

a2b3 + a3b2 − ca2b2, (8)

a1b1 + 1− a2b2, (9)

a3 − b3. (10)

So we have b3 = a3, b2 = a1 + a2 − b1, and a2b2 = a1b1 + 1. Notice that adding (7)

and (8) results in the relation a1b3 + a3b1 + a2b3 + a3b2 so we may replace (7) by

a1b3 + a3b1 + a2b3 + a3b2. With these substitutions we get:

a1(a1 + a2) + ba1a3 + (−a1 + a2 + ba3)b1 = 0, (11)

(a1 + a2)a3 = 0 (12)

(a1 + 2a2)a3 + (−ca1 − a3)b1 − c = 0 (13)

a2(−a1 − a2) + (a1 + a2)b1 + 1 = 0 (14)

Changing variables via x = a1, y = a1+a2, z = a3, w = b1 gives the following relations:

xy + bxz + (y − 2x+ bz)w (15)

yz (16)

(2y − x)z + (−cx− z)w − c (17)

−(y − x)y + yw + 1 (18)
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Let I be the ideal generated by these relations. Multiplying (18) by z and using (16)

we see that z ∈ I. Hence we have xy+ (y− 2x)w, xw+ 1, and −(y− x)y+ yw+ 1 in

I. So xy+ (y− 2x)w+ 2(xw+ 1)− (−(y− x)y+ yw+ 1) = y2 + 1 implies y2 + 1 ∈ I.

Also y(−(y − x)y + yw + 1) ∈ I implies w − 2y + x ∈ I. Putting all of this together

we get that the coordinate ring of V ∩ Γ is

k[x, y]

(y2 + 1,−2− 4xy + 2x2, 2xy − x2 + 1)
.

This is a 4-dimensional algebra with basis {1, x, y, xy} which is a semilocal ring

with 2 maximal ideals M1, M2 corresponding to p1 and p2. Localize at M1. Then

y − i /∈ M1 so y2 + 1 = (y + i)(y − i) = 0 implies that y + i = 0 in the localization.

The local ring is given by

k[x]/(x2 + 2ix− 1),

a 2-dimensional ring. Hence the multiplicity of p1 = 2. Similarly, localizing at M2

implies the multiplicity of p2 is 2.

Finally we need to compute m(p5) and m(p6). Since the automorphism τ of Γ

permutes p5 and p6, we need only compute the multiplicity of p5. Let W be the affine

open neighborhood of p5 given by a2 = b4 = 1. Notice that W ∩ Γ = {p5}. The

relations in the coordinate ring of Γ ∩W are given by

a1b2 + b1 − bcb2, a1 − a4b1 + 1− a4b2

a1b3 + a3b1 + cb2, b3 + a3b2 − cb2

a1b1 + a4 − b2, a3 − a4b3
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Solving for b1 and b3 we have:

b1 = (bc− a1)b2 b3 = (c− a3)b2

Making these substitutions we have:

a1 + 1− a4(bc− a1 − 1)b2 = 0 (19)

(−2a1a3 + ca1 + bca3 + c)b2 = 0 (20)

a4 + (a1(bc− a1)− 1)b2 = 0 (21)

a3 − a4(c− a3)b2 = 0 (22)

Now (19)-b(22) implies that (a1 − ba3 + 1)(1 + a4b2) = 0. We now localize at the

maximal ideal M5 = (a1+1, a3, a4, b2). Noting that 1+a4b2 /∈M5, we get a1 = ba3−1.

Making this substitution results in,

2b2a3(1 + bc− ba3) = 0 (23)

b2(−2− bc+ 2ba3 + b2ca3 − b2a2
3) + a4 = 0 (24)

a3 − cb2a4 + b2a3a4 = 0 (25)

b(a3 − cb2a4 + b2a3a4) = 0 (26)

Since bc 6= −1, the element 1 + bc− ba3 is not in M5. Therefore b2a3 = 0. Using

(24), we have a4 = (2 + bc)b2. Using this to eliminate a4 we have:

−b(2cb2 + bc2b22 − a3) = 0 −2cb22 − bc2b22 + a3 = 0
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Hence a3 = c(2+bc)b22, so that we have the relation b32(−1+bcb22). Now −1+bcb22 /∈

M5 so we have b32 = 0. Hence the local ring is given by

k[b2]

(b32)
,

a 3-dimensional ring. So the multiplicity of the point p5 is 3. Whence the multiplicity

of p6 is also 3.

Finally the multiplicity of p7 is 20−
6∑

i=1

m(pi) = 6. This completes the proof.



61

CHAPTER IV

GEOMETRY OF QUANTUM P3’s.

IV.1. Fat point modules

In his paper [1] Artin defined the notions of fat point and fat point module.

Definition IV.1.1. Let A be an N-graded k-algebra.

1) A fat point is an object F ∈ ProjA which is an equivalence class of graded GK-

critical A-modules of GKdim 1 and multiplicity m > 1.

2) A fat point module F is a 1-critical graded A-module of multiplicity m > 1.

In 2), 1-critical means GKdim = 1 and every proper quotient is finite-dimensional

and multiplicity m means that dimk Fn = m for all n sufficiently large.

Let R be a graded k-algebra and suppose that R is finite over its center Z(R).

Then one expects there to be many fat point modules and indeed this is the case by

the following theorem.

Theorem IV.1.2. Suppose A is a graded k-algebra which is finite over a graded

central subalgebra C. Suppose dim ProjC ≥ 1. If A has a finite point scheme then A

has infinitely many fat point modules.
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Proof. Let p ∈ ProjC be a closed point. We construct a graded A-module by defining

p̂ = C/p⊗C A. Now A finite over C implies GKdim(p̂) = GKdim(C/p) = 1 so that p̂

has a composition series with 1-critical factors which are necessarily either fat point

modules or point modules. As p varies through ProjC the A-modules p̂, having

different central actions, must be nonisomorphic as A-modules. By [23] (p. 9), the

1-critical factors in a composition series of a GK dimension 1 module are uniquely

determined. Therefore since A has only finitely many point modules it follows that

there are infinitely many fat point modules.

We wish to determine the fat point modules of the Shelton-Tingey algebra A. We

first discuss how one sets up the computation in order to calculate the fat points. A

fat point module of multiplicity m > 1 is equivalent in ProjA to a module F with

constant Hilbert series, HF (t) = m. Therefore a fat point module is determined by

the data of a collection of linear maps ϕi : A1 → Hom(Fi, Fi+1) for i ≥ 0. By choosing

fixed bases for the m-dimensional spaces Fi, we may identify Hom(Fi, Fi+1) with the

space Mm(k) of m × m matrices over k. Since we are dealing with right modules,

matrices always act on the right.

The collection of maps (ϕi)i≥0 satisfies the further condition that whenever r =∑
i,j

cijxi ⊗ xj, cij ∈ k, xi, xj ∈ A1 is a relation of A then
∑
i,j

cijϕk(xi)ϕk+1(xj) = 0

in Hom(Fk, Fk+2). Thus these conditions yield equations on the matrix entries of the

ϕk. In general, a solution (ϕi)i≥0 of the equations will not yield a fat point module

because we further require that fat point modules give simple objects in the category
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ProjA. Hence the matrices giving the ϕi cannot eventually all have the same block

form. This requirement further restricts the possible cases that have to be considered.

In order to compute the fat point modules we fix the following notation. Suppose

F is any N-graded right A-module. Let Ai, Bi, Ci, Di, i = 1, 2, 3, 4 denote the action

of the linear element xi ∈ A1 on F0, F1, F2, F3, respectively. In other words, in the

notation of the previous paragraph, ϕ0 : A1 → Hom(F0, F1) is the linear map defined

by sending xi 7→ Ai. Similarly ϕ1 corresponds to the Bi, etc..

Finally, since twisting an algebra A does not change Gr Mod, in order to find the

fat point modules for A, it suffices to compute the fat point modules for Aσ for any

σ ∈ AutGr(A).

Fat Point Modules for the twist Ad3 .

In this section we will determine some of the fat point modules for the twist of

the Shelton-Tingey example, given by the automorphism d3. Recall that this twist

has relations given by

r1 = x3 ⊗ x1 + x1 ⊗ x3 − ix2 ⊗ x2 r2 = x4 ⊗ x1 + x1 ⊗ x4

r3 = x4 ⊗ x2 + x2 ⊗ x4 − ix3 ⊗ x3 r4 = x3 ⊗ x2 − x2 ⊗ x3

r5 = x1 ⊗ x1 + x3 ⊗ x3 r6 = x2 ⊗ x2 + x4 ⊗ x4

Recall this algebra has a central subring C = k[x2
1, x

2
2,Ω1,Ω2] where Ω1 = (x1x2)

2+

(x2x1)
2 and Ω2 = (x3x4)

2 + (x4x3)
2. Also recall that A is a free C-module. Given a

fat point module F , the annihilator AnnA(F ) is a prime ideal in A by [4], Proposition
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2.30 (vi). Consider the intersection ζ = C ∩ AnnA(F ). We will now prove that, in

this setting, ζ is a closed point of ProjC.

Lemma IV.1.3. Suppose C ⊂ A is an extension of graded rings and suppose C is

commutative. Suppose P is a graded prime ideal of A. Let Q = C ∩ P . Then Q is a

prime ideal of C.

Proof. We first note that Q is a proper ideal in C. If not then Q contains 1 which

implies P = A. It is also trivial to see that Q is an ideal. We need to see that Q is

prime.

Suppose Q ⊃ IJ for some ideals I, J in C. Then P ⊃ (AI)(JA). Since I, J are

in C, AI and JA are two-sided ideals in A. Since P is prime, we may assume that

P ⊃ AI. Now we have I ⊂ AI ∩ C ⊂ P ∩ C = Q. Hence Q is prime.

Let F be a fat point module. We may assume F is cyclic and generated in degree

0, say F = v0A, 0 6= v0 ∈ F0.

Lemma IV.1.4. Let ζ = C ∩ AnnA(F ). Then ζ = AnnC(v0).

Proof. Let x ∈ ζ then v0x = 0 so x ∈ AnnC(v0). Conversely, suppose y ∈ AnnC(v0)

and let w = v0a ∈ F for some a ∈ A. Then

wy = (v0a)y

= (v0y)a

= 0.
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Proposition IV.1.5. Suppose A is a finitely generated module over a connected

graded central subalgebra C. Let F be a fat point module for A. Let ζ = C∩AnnA(F ).

Then ζ is a closed point in ProjC.

Proof. Since AnnA(F ) is prime in A, by IV.1.3 we have that ζ is a graded prime ideal

of C. By IV.1.4, C/ζ embeds in F . So since GKdimF = 1 we have GKdimC/ζ ≤ 1.

If GKdimC/ζ = 1 then ζ is a graded maximal ideal, ie a closed point of ProjC.

Otherwise GKdimC/ζ = 0 in which case ζ is the irrelevant ideal C+ = C≥1.

Suppose ζ = C+. Then since A is a finitely generated C-module, we may choose

homogeneous generators {a1, . . . an} and write A =
n∑

i=1

Cai. Then we would have

F = v0.A = v0.(
n∑

i=1

Cai) =
n∑

i=1

k(v0ai) which contradicts the fact that GKdimF = 1.

This completes the proof.

We are going to consider the affine subscheme of ProjC given by all ζ which do

not contain x2
1.

We need the following general result about graded prime ideals in a weighted

polynomial ring.

Proposition IV.1.6. Let R = k[x1, x2, x3, x4] be a commutative polynomial ring with

deg(x1) = deg(x2) = 1 and deg(x3) = deg(x4) = 2. Then the maximal graded prime

ideals of R are given by

1) (αx1 − x2, βx
2
1 − x3, γx

2
1 − x4)
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2) (αx2 − x1, βx
2
2 − x3, γx

2
2 − x4)

3) (x1, x2, αx3 − βx4)

where α, β, γ ∈ k.

Proof. Consider the second Veronese subalgebra R(2) = k[x2
1, x1x2, x

2
2, x3, x4]. Then

R ⊃ R(2) is an integral extension. So the lying over theorem implies that for each

graded prime ideal P in R(2) there exists a graded prime ideal Q of R lying over P .

Furthermore, in this case, the graded prime Q is unique. This follows from Lemma

2.4 in [16].

Let P denote a maximal graded prime ideal of R(2), and let Q be the graded prime

ideal of R lying over P .

Case 1: x2
1 /∈ P . Then P = (αx2

1 − x1x2, α
′x2

1 − x2
2, βx

2
1 − x3, γx

2
1 − x4), with

α′ = α2. Now αx2
1 − x1x2 = x1(αx1 − x2) and by our assumption, x1 /∈ Q. Therefore

αx1− x2 ∈ Q. Let Q = (αx1− x2, βx
2
1− x3, γx

2
1− x4) then Q is a graded prime ideal

of R and clearly lies over P so it is the unique prime over P .

Case 2: x2
2 /∈ P . This case is exactly the same as Case 1.

Case 3: x1 ∈ P , x2 ∈ P .

Note that R(2)/(x1, x2) ∼= k[x3, x4] and maximal graded primes of k[x3, x4] have the

form (αx3−βx4). So the unique graded prime lying over P is Q = (x1, x2, αx3−βx4).

Cases (1)-(3) are exhaustive so this completes the proof.
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Definition IV.1.7. Let M be a graded A-module and C ⊂ A a graded central

subalgebra. We call ζ = C ∩AnnA(M) the central character associated to C and M .

When we compute fat point modules we will also compute their central characters.

For the twisted algebra Ad3 , the following proposition describes the maximal graded

primes for the central subalgebra k[x2
1, x

2
2,Ω1,Ω2]. These will turn out to be the

central characters of the fat point modules.

Proposition IV.1.8. Let k[x2
1, x

2
2,Ω1,Ω2] be the polynomial subalgebra of the twist

Ad3 where Ω1 = (x1x2)
2 + (x2x1)

2 and Ω2 = (x3x4)
2 + (x4x3)

2. Then the maximal

graded prime ideals are given by:

1) (αx2
1 − x2

2, βx
4
1 − Ω1, γx

4
1 − Ω2)

2) (αx2
2 − x2

1, βx
4
2 − Ω2, γx

4
1 − Ω2)

3) (x2
1, x

2
2, αΩ1 − βΩ2)

where α, β, γ ∈ k.

Proof. We first regrade so that the degrees of the generators of C are (1,1,2,2) re-

spectively. Then we apply IV.1.6.

Assumption 1: x2
1 acts injectively on the fat point module F .

We use the notation Ai, Bi, Ci for i = 1, 2, 3, 4 for the action of xi on F0, F1, F2

respectively. Also we let I denote the identity matrix whose size is determined in
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context. Thus under assumption 1, we may choose bases so that A1, B1 and C1 act

as the identity matrix. Then the relations become:

r1 = A3 +B3 − iA2B2 r2 = A4 +B4

r3 = A4B2 + A2B4 − iA3B3 r4 = A3B2 − A2B3

r5 = I + A3A3 r6 = A2B2 + A4B4

Hence B4 = −A4, B3 = −A−1
3 , and B2 = −B3A2B3. The analogous formulas for

the Ci are given by C4 = −B4 = A4, C3 = −B−1
3 = A3, and C2 = −C3B2C3 = A2.

If we can solve the relations for the A′s and B′s then since Ci = Ai for 1 ≤ i ≤ 4,

the truncated module of length 3 extends uniquely to a fat point module. Therefore

to find all fat point modules in this case, it suffices to solve the relations for the A′s

and B′s. We eliminate B4, A3 and B2 which leaves us with:

−B−1
3 +B3 + i(A2B3)

2 (1)

−A4B3A2B3 − A2A4 + iI (2)

−(A2B3)
2 − A2

4 (3)

Multiplying (1) by B3 on the left and the right gives the two equations

B2
3 + iB3(A2B3)

2 − I = 0 B2
3 + i(A2B3)

2B3 − I = 0

So we have B3(A2B3)
2 = (A2B3)

2B3, and from (3) we get B3A
2
4 = A2

4B3. Notice

that B3 is invertible, so we also get (B3A2)
2 = (A2B3)

2. Hence

A2(A4)
2 = −A2(A2B3)

2 = −A2(B3A2)
2 = A2

4A2.
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Finally, since we must solve B4C2 + B2C4 − iB3C3 = 0, we also have the relation

−A4A2 −B3A2B3A4 + iI. We summarize the equations we will use below:

r1 = B2
3 − iA2

4B3 − I r2 = (A2B3)
2 + A2

4

r3 = B3A2B3A4 + A4A2 − iI r4 = A4B3A2B3 + A2A4 − iI

Multiplicity 2 fat point modules

In this subsection we determine all of the multiplicity 2 fat point modules under

the assumption that x1 acts injectively. We consider cases based on the Jordan block

form of A4. Changing basis will not change the assumption that A1, B1 are the 2 x

2 identity matrix. If A4 is diagonalizable with A2
4 having distinct eigenvalues then

the fact that A2 and B3 both commute with A2
4 immediately implies A2, B3 and A4

are all diagonal. This implies the corresponding module is not simple, it has a point

module as a submodule. Similarly if A4 =

a 1

0 a

 with a 6= 0, then we again have

that A2 and B3 would be upper triangular. Hence any solution would have a point

module as a submodule. Note also that from r3, A4 cannot be the zero matrix.

There are three remaining cases:

Case 1: A4 = aI, a 6= 0,

Case 2: A4 =

a 0

0 −a

, a 6= 0,

Case 3: A4 =

0 1

0 0

.



70

We begin with;

Case 1: A4 = aI, a 6= 0.

Since A4 is a scalar matrix, we may assume B3 is in Jordan canonical form. We

also note B3 satisfies the polynomial p(x) = x2 − ia2x − 1 which follows from r1. If

a4 6= 4 then p(x) has distinct roots so that B3 is diagonalizable.

Case 1 (a): Assume a4 6= 4.

If B3 is scalar then we could put A2 in upper triangular form without changing

A4 or B3, which would yield a nonsimple solution. Hence we may assume that B3 =a3 0

0 d3

 where a3, d3 are the distinct roots of p(x). Thus a3d3 = −1 and a3 + d3 =

ia2. Let P =

λ 0

0 µ

 with λµ 6= 0. This is a nontrivial change of basis matrix which

fixes the diagonal matrices B3 and A4. Write A2 =

a2 b2

c2 d2

. If c2 = 0 then we

would have a nonsimple solution, so we may assume c2 6= 0. Now conjugating by P

with λ = 1 and µ = c−1
2 we may assume c2 = 1.

We have satisfied the relation r1. Note that r3 and r4 are the same equation since

A4 is scalar. Examining the matrix entries in r2 implies that a2 =
i

a(a2
3 + 1)

and

d2 =
i

a(d2
3 + 1)

. However b2 is still undetermined, it remains to solve r2. The matrix
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entries of r2 are: a3(a
2
2a3 + b2d3) + a2 b2d3(a2a3 + d2d3)

a3(a2a3 + d2d3) d3(a3b2 + d3d
2
2) + a2


Direct computation shows that a2a3 + d2d3 = 0. Solving the (1,1) entry of the

above matrix for b2 gives b2 = a2 + a2
2a

2
3. The (2,2) entry of the above gives b2 =

a2 + d2
2d

2
3. These are consistent because (a2a3)

2 − (d2d3)
2 = 0. This ends Case 1 (a).

Case 1 (b): a4 = 4.

In this case the polynomial p(x) has one root namely ±i. So that B3 is either ±iI

or

±i 1

0 ±i

 where the signs are the same. The case where B3 is scalar implies that

we can change basis to get A2 in upper triangular form so we must have B3 =

b 1

0 b

,

with b = ±i. The stabilizer of B3 in this case consists of all matrices of the formx y

0 x

 with x 6= 0. Write A2 as above, then we may assume that c2 6= 0, since if

c2 = 0, then we have a point module as a submodule. Let P =

1 −a2

c2

0 1

. Then

after conjugation by P we may assume a2 = 0. The relation r3 is linear in the entries

of A2, solving for the entries of A2 we have c2 = ±a−1 and d2 = ia−1. It remains to

solve for b2 which we can do by looking at r2 which implies b2 = ±a3. The choice of

signs is determined by choosing the same sign as b in B3, and these are all solutions.

This completes Case 1 (b).
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Case 2: A4 has distinct eigenalues a and −a, with a 6= 0.

B3 satisfies the polynomial p(x) given above, so again we consider the two possi-

bilities: (a) p(x) has two distinct roots or (b) p(x) has exactly one root.

Case 2 (a): a4 6= 4.

B3 is diagonalizable with eigenvalues coming from the set {r1, r2} of roots of

p(x). If B3 is scalar then we may change basis so that A4 =

a 0

0 −a

. Then

the (2,1) entry of r3 is ac2(a
2
3 − 1). If c2 = 0 then the solution cannot be simple,

so we must have a3 = ±1. But then ±1 is a root of p(x) which implies a = 0, a

contradiction. Therefore we have B3 =

a3 0

0 d3

 where a3, d3 are the distinct roots

of p(x). Consider the change of basis matrix P =

λ 0

0 µ

. Conjugation by P fixes

B3 and allows us to consider two cases for A4, namely

(i) A4 =

a4 b4

1 d4

 (ii) A4 =

a4 b4

0 −a4

 .

First consider case (i). Since A2
4 is a scalar matrix we immediately have d4 = −a4.

Recalling that a3d3 = −1, the matrix entries of r3 are given by:i− a2a4 − a2a
2
3a4 − b2 + b4c2 2a4b2 − a2b4 − a3−2b4d2

−a2a
2
3 − 2a4c2 − d2 i+ b2 − b4c2 + a4d2 + a−2

3 a4d2
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and the entries of r4 are given by:i− a2a4 − a2a
2
3a4 + b2 − b4c2 −2a4b2 − a2a

2
3b4 − b4d2

−a2 + 2a4c2 − a−2
3 d2 i− b2 + b4c2 + a4d2 + a−2

3 a4d2


Clearing denominators and adding the off diagonal entries yields: a4b2(1 + a2

3) =

0, a4c2(1 + a2
3). If a4 = 0 or if a2

3 = −1 then the sum of the (1,1) entries implies that

2i = 0 which is absurd. Therefore we have b2 = c2 = 0. Then r2 implies d2 = −a2a
2
3

and that i − a2a4 − a2a
2
3a4 = 0. From r4 we have b4 = −a2

2a
2
3 − a2

4 and finally r1

implies 1− a2
3 − ia2

2a
3
3 = 0. We summarize the solution below as:

A2 =

a2 0

0 d2

 , B3 =

a3 0

0 d3

 , A4 =

a4 b4

1 −a4


where

d3 = −a−1
3 d2 = −a2a

2
3

b4 = −a2
2a

2
3 − a2

4 1− a2
3 − ia2

2a
3
3 = 0

i− a2a4 + a2a
2
3a4 = 0.

Note that given a value for a3 we can determine all other variables. However, a3 /∈

{±1,±i}. For recall that a3 is a root of p(x) so a3 = ±1 implies a = 0 and a3 = ±i

implies a4 = 4, and we are not in either of these cases.

We now consider case (ii) in which A4 =

a4 b4

0 −a4

. Then the (1,1) entry from

r3 is −2a4c2. Since a4 = 0 implies a = 0 we must have c2 = 0 but then all of A2, B3, A4

are upper triangular giving a nonsimple solution.
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Case 2 (b): a4 = 4.

In this case the polynomial p(x) has exactly one root namely ±i. Then we may

put B3 into Jordan canonical form and assume B3 =

a3 1

0 a3

 with a3 = ±i. The

conjugation stabilizer of B3 contains matrices of the form

x y

0 x

 with x 6= 0.

Conjugation by a matrix of this type allows us to put A4 into the following two

possibilities:

(i) A4 =

 0 b4

c4 d4

 (ii) A4 =

a4 b4

0 d4

 .

Consider possibility (ii). In this case the (1,1) entry of r3 is −2a4c2. If a4 = 0

then a = 0, a contradiction and if c2 = 0 then this is a nonsimple solution. Hence

we need only consider possibility (i). There are solutions in this case and they are

summarized in:

A2 =

a2 ±ia2

0 a2

 , B3 =

±i 1

0 ±i

 , A4 =

 0 b4

c4 0

 ,

where b4c4 = ±2, a2
2 = ±2, and a2c4 = ±1. The signs are all determined consistently

by the choice of sign in B3. This gives precisely 4 solutions and concludes Case 2.

Case 3: A4 =

0 1

0 0

.

In this case B3 satisfies the polynomial q(x) = x2 − 1. Hence B3 is diagonalizable

and there are two possibilities for the Jordan form of B3, namely (i) B3 = ±I or (ii)
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B3 =

1 0

0 −1

.

We first consider possibility (i). Since B3 is scalar we may change basis and assume

A4 =

0 1

0 0

. Write A2 =

a2 b2

c2 d2

. Then r3 and r4 give the same information

and imply c2 = i and d2 = −a2. The stabilizer of A4 contains matrices of the form

P =

λ µ

0 λ

. Taking λ = i and µ = −a2 and conjugating by P we may assume

a2 = 0 and so d2 = 0. Then r2 implies that b2 = 0. We have the following solutions

in this case:

A2 =

0 0

i 0

 , B3 = ±I, A4 =

0 1

0 0

 .

This finishes (i).

It remains to look at (ii). We write A4 =

a4 b4

c4 d4

. In this case A2
4 = 0 and

we consider two possibilities: (a) c4 = 0 or (b) c4 6= 0. Conjugating by a diagonal

matrix doesn’t change B3 and we can scale the off diagonal entries in A4. Consider

possibility (a). We may assume b4 = 1 and then the sum of the off diagonal entries

in r3 implies 2i = 0 which is absurd.

In (b) we have d4 = −a4 and we may change basis to get c4 = 1. Then the

difference of the (2,1) entries in r3 and r4 implies that a4c2 = 0. If a4 = 0 then

the trace of r3 is 2i, a contradiction. If c2 = 0 then the diagonal entries in r2 are

a2
2 + a2

4 + b4 and d2
2 + a2

4 + b4. Since A2
4 = 0 we have a2

4 + b4 = 0 and then a2 = d2 = 0.
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But then the sum of the off diagonal entries in r3 is 2i, a contradiction. This finishes

Case 3 and concludes the analysis of the fat point modules of multiplicity 2 under

Assumption 1.

We now wish to compute the central characters of the multiplicity 2 fat points.

Under our assumption, x2
1 acts injectively so that we are in the affine subscheme of

ProjC consisting of the points (αx2
1 − x2

2, βx
4
1 − Ω1, γx

4
1 − Ω2), with α, β, γ ∈ k. We

will abbreviate these points as (α, β, γ). Recall that the automorphism induced on

the fat points under assumption 1 has order 2. Thus given a fat point module F

we need only compute the scalar matrices: A2B2, B
2
2 +A2

2, (A3B4)
2 + (A4B3)

2 whose

scalars yield α, β, γ respectively. We summarize the above analysis in the following.

Theorem IV.1.9. Let A denote the twist of the Shelton-Tingey example by the au-

tomorphism d3. Let C = k[x2
1, x

2
2,Ω1,Ω2] denote the central subalgebra given above.

Let X denote the affine subscheme of ProjC given by

{(αx2
1 − x2

2, βx
4
1 − Ω1, γx

4
1 − Ω2) | α, β, γ ∈ k}.

Then the fat point modules for which x2
1 acts injectively along with their central char-

acters are:

1. F1:

A2 =

a2 b2

1 d2

 , B3 =

a3 0

0 d3

 , A4 = aI,

where a2 =
i

a(1 + a2
3)

, d2 =
i

a(1 + d2
3)

, b2 = a2 + a2
2a

2
3 give the entries of A2.
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The entries of B3 are the distinct roots of x2 − ia2x− 1, and a4 /∈ {0, 4}. The

central character is given by (a2,
2a4 − 1

a2
, a2(2− a4)) = (α, β, γ).

2. F2:

A2 =

 0 b2

c2 d2

 , B3 =

b 1

0 b

 , A4 = aI,

where b2 = ±a3, c2 = ±a−1 and d2 = ia−1 give the entries of A2. The diagonal

entry in B3, b is ±i, and a4 = 4. The choices of the signs are all determined by

choosing the same sign as b. The central characters are (±2,±7

2
,∓4) = (α, β, γ)

where the choice of sign is again determined by the sign of b.

3. F3:

A2 =

a2 0

0 d2

 , B3 =

a3 0

0 d3

 , A4 =

a4 b4

1 −a4

 .

The entries are determined by the following equations:

d3 = −a−1
3 d2 = −a2a

2
3

b4 = −a2
2a

2
3 − a2

4 1− a2
3 − ia2

2a
3
3 = 0

i− a2a4 − a2a
2
3a4 = 0

Set a2 = a2
4 + b4 and assume a4 6= 4. The central character is (a2,−a2(2 −

a4),
1− 2a4

a2
) = (α, β, γ).

4. F4:

A2 =

a2 ±ia2

0 a2

 , B3 =

b 1

0 b

 , A4 =

 0 b4

c4 0

 ,
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where b4c4 = ±2, a2
2 = ±2, a2c4 = ±1, and b = ±i. The signs are all determined

by choosing the same sign as b. The central characters are (±2,±4,∓7

2
) =

(α, β, γ). The signs are given by choosing the same sign as b.

5. F5:

A2 =

0 0

i 0

 , B3 = ±I, A4 =

0 1

0 0

 .

The two central characters are (0, 0, 0) = (α, β, γ).

Proof. The formulas for the action of A on Fi were determined in the subsection

Multiplicity 2 fat point modules. Recall that under the assumption that x2
1 acts

injectively, we have the formulas: B4 = −A4, A3 = −B−1
3 , and B2 = −B3A2B3. It is

now straightforward to compute the central characters for the fat point modules in

the families F1, F2, F4, F5 in terms of the parameter a which gives the eigenvalue of

the matrix A4. The only exception is the family F3. However notice that in this case

the parameter a2 is the unique eigenvalue of A2
4. We compute as follows.

By multiplying out the matrices we compute that the central character is (a2d2, a
2
2+

d2
2,
a2

4

a2
3

+ a2
3a

2
4− 2b4). In this case we have used a3 as a parameter so we want to write

this character in terms of a3 and then use a formula relating a3 and a2. We have

a2d2 = −a2
2a

2
3 = a2

4 + b4 = a2. On the other hand, −a2
2a

2
3 =

−a2
3(1− a2

3)

ia3
3

=
a2

3 − 1

ia3

, so

a2 =
a2

3 − 1

ia3

.

Now we have 2 − a4 = 2 − (
a2

3 − 1

ia3

)2 =
a4

3 + 1

a2
3

so a2
2 + d2

2 = a2
2(1 + a4

3) =
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(1− a2
3)(1 + a4

3)

ia3
3

= −a2(2− a4). Finally we can write
2a4 − 1

a2
in terms of a3 as

2a4 − 1

a2
=
−i(2a4

3 − 3a2
3 + 2)

a3(a2
3 − 1)

.

Calculating
a2

4

a2
3

+ a2
3a

2
4 − 2b4 in terms of a3, we find that

a2
4

a2
3

+ a2
3a

2
4 − 2b4 =

2a4 − 1

a2
.

So the character as stated for F3 is correct. This finishes the proof.

We remark that in the 3-fold ProjC, we have only found two affine curves worth

of multiplicity 2 fat point modules.

Multiplicity 4 fat point modules

In this section we will determine most of the fat point modules of multiplicity 4

for the algebra Ad3 again working under the assumption that x2
1 acts injectively. In

ProjC this means we are considering the affine subscheme X ⊂ ProjC whose closed

points have the form ζ = (αx2
1− x2

2, βx
4
1−Ω1, γx

4
1−Ω2). We first make the following

definition.

Definition IV.1.10. Given a closed point ζ = (αx2
1 − x2

2, βx
4
1 − Ω1, γx

4
1 − Ω2) in X

define the k-algebra Aζ = ((A/ζA){x2
1})0. The notation A{x2

1} is the localization of A

at the central element x2
1. We then take the subalgebra of degree 0 elements in this

localization.
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Aζ is a finite-dimensional k-algebra and we compute its dimension as follows. We

first note that A/(x2
1, αx

2
1 − x2

2, βx
4
1 − Ω1, γx

4
1 − Ω2)A = A/(x2

1, x
2
2,Ω1,Ω2)A. Since

x2
1, x

2
2,Ω1,Ω2 is a regular sequence it follows from II.1.5 that αx2

1−x2
2, βx

4
1−Ω1, γx

4
1−Ω2

is a regular sequence and x2
1 is regular modulo ζ. Then the Hilbert series of A/ζA

is
(1− t2)(1− t4)2

(1− t)4
=

(1 + t)3(1 + t2)2

1− t
so that dimk(A/ζA)n = 32 for n ≥ 8. Since

x2
1 is regular modulo ζ, after localizing, (x2n

1 ) defines an invertible linear map from

((A/ζA){x2
1})l to ((A/ζA){x2

1})l+2n for l ∈ N. Hence dim((A/ζA){x2
1})l = 32 for all

l ∈ N, in particular dimk Aζ = 32. This puts an upper bound on the multiplicity of

fat points.

Proposition IV.1.11. Let F be a fat point module for the algebra Ad3 and let m be

the multiplicity of F . Then m ≤ 5.

Proof. Let ζ be the central character of F . Then ζ ∈ ProjC by IV.1.1 so ζ is one

of the graded prime ideals in IV.1.8. Then Aζ is either a 16 or 32 dimensional ring.

The fat point module F defines a simple module for Aζ of dimension m. Then the

Artin-Wedderburn theorem implies that the maximal dimension of a simple module

for Aζ is 5.

We will now prove that generically the rings Aζ for ζ ∈ X are semisimple by

exhibiting a 3-parameter family of multiplicity 4 fat point modules. For a generic

ζ ∈ X, we find two non-isomorphic simple 4 dimensional representations of Aζ . Since

dimk Aζ = 32, the Artin-Wedderburn theorem implies that Aζ
∼= M4(k) × M4(k)

where M4(k) denotes the algebra of 4 x 4 matrices over k. Hence Aζ is semisimple.
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Theorem IV.1.12. Define the multiplicity 4 A-module F by the formulas A1 = I4

and

A2 =



L 0 1 0

0 −L 0 1

G 0 f 2L 0

0 G 0 −f 2L


, A3 =



−f−1 0 0 0

0 −f−1 0 0

0 0 f 0

0 0 0 f


,

A4 =



i

(1 + f 2)L
a2 0 1

b1
−i

(1 + f 2)L

−b1
a2

0

0 G− a2(1− f 2)L
i

(1 + f 2)L
a2

−b1
a2

(G− a2L(1− f 2)) 0 b1
−i

(1 + f 2)L


,

where L, f,G, a2, b1 ∈ k with f /∈ {0,±i}. Let B1 = I4, B2 = −A−1
3 A2A

−1
3 , B3 =

−A−1
3 , and B4 = −A4. Let G =

i

f
− if + f 2L2, H = (1 + f 2)2L2, and

p(x) = b1fHx
2 − (f + L2(i− b1fL)(1 + f 2 − f 4 − f 6))x− b1H(i− if 2 + f 3L2).

Let a2 be a root of p(x). Then for generic values of the parameters b1, f, L the two

values for a2 give non-isomorphic fat point modules of multiplicity 4.

Proof. Substituting the above matrices, without specializing a2, into the relations of

A, we are left with only one equation which says a2 is a root of the quadratic p(x).

Therefore F is an A-module. For generic values of b1, f, L, p(x) will have distinct

roots. We want to show that the two modules determined by the choice of roots for

p(x) are not isomorphic as A-modules. We denote these two modules by F and F ′
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and let Ai , A′
i denote the respective actions of xi on the degree zero component of

the module.

An isomorphism F ∼= F ′ defines an isomorphism F0
∼= F ′

0 which is just a change

of basis in the degree 0 component. Hence an isomorphism implies the existence of

an invertible matrix X ∈ M4(k) such that XAiX
−1 = A′

i for 1 ≤ i ≤ 4. Notice that

Ai = A′
i for 1 ≤ i ≤ 3. The centralizer of A3 is given by

C(A3) = {

P 0

0 Q

 | P,Q ∈ GL2(k)}

since f 2 + 1 6= 0. Let X =

P 0

0 Q

 ∈ C(A3). If XA2X
−1 = A2 then the upper

right 2 x 2 block of this equation implies immediately that P = Q. Furthermore

P

L 0

0 L

P−1 =

L 0

0 L

. Then since L 6= 0 this implies that P is a diagonal

matrix. Now suppose that XA4X
−1 = A′

4 then looking at the upper 2 x 2 block of

this equation it follows that P

 0 1

−b1
a2

0

P−1 =

 0 1

−b1
a2

0

. But P is diagonal so

the fact that the 1 in the (1,2) entry of this equation is fixed implies that P is scalar.

Hence X is scalar. This is a contradiction because then XA4X
−1 = A4. Therefore F

and F ′ are not isomorphic as A-modules.

The only thing left to prove is that generically F is a simple object of ProjA.

If F isn’t simple then it’s an extension of either a point module or a multiplicity 2

fat point module. There are only 20 point modules and by IV.1.9, there are only
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two curves of multiplicity 2 fat points. Since generically the character of F is not

the character of a point module or a multiplicity 2 fat point module, it follows that

generically F is simple.

The central characters of the modules F are given by:

Proposition IV.1.13. Let F be a module given in IV.1.12. Let H be as in IV.1.12.

Then for fixed values of the parameters b1, f, L the central character of F and F ′ is:

(αx2
1 − x2

2, βx
4
1 − Ω1, γx

4
1 − Ω2)

where α =
i(1− f 2)

f
, β = 2α+H, and

γ =
1

a2f 2H
(a2

2b1H(1 + f 4) + 2b1fH(i− if 2 + f 3L2)+

a2(−1− 2b1f
2L3(1− f 4 − f 6)− f 4(1 + 2b1L

3))).

Proof. Using the formulas in IV.1.12 we compute the matricesA2B2, A
2
2+B

2
2 , (A3B4)

2+

(A4B3)
2. These are all scalar matrices and we get αI, βI, γI respectively. The for-

mulas for α, β, and γ follow.

Notice that we can obtain a generic character ζ ∈ C for some values of the

parameters b1, f, L.

Conversely, suppose we fix a central character ζ = (α, β, γ). Using the formulas in

IV.1.13 for α and β, we fix two values of f and L. Using the formula for γ, we solve

for b1 in terms of a2 and γ. Notice that the formula for γ is linear in b1 so generically

there is one solution for b1. Substituting the values for f, L, and b1 into p(x), we get
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a quadratic polynomial whose coefficients are functions of α, β, and γ. Generically

this polynomial will have two roots. Now the proof of IV.1.12 shows that the two

modules determined by these two roots, along with the fixed values of b1, f, and L,

are not isomorphic. Therefore, generically, the ring Aζ has two non-isomorphic simple

4-dimensional modules. By the Wedderburn theorem this implies A is semisimple and

Aζ
∼= M4(k)×M4(k).

IV.2. Line Modules

Throughout this section we will denote by A the Shelton-Tingey example and use

R for a quantum Pn.

Another notion central to the study of the noncommutative geometry of a quantum

projective space is the concept of a line module.

Definition IV.2.1. Let R be a quantum Pn and L a graded right R-module. Then

L is a line module if:

1) L is cyclic and generated in degree 1

2) HL(t) =
1

(1− t)2

In the case of a quantum P2 the line modules are in one-to-one correspondence with

the lines in the projective space P(R1) ∼= P2. However in the case of a quantum P3

not every line in P(R1) yields a line module. Given l ⊂ P(R1), the associated module
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R/lR may have the wrong Hilbert series. On the positive side, the line modules are

parametrized by the following.

Theorem IV.2.2. [19] Let R = T (V ∗)/I be a quantum P3. Let G2(V ∗) denote the

Grassmannian scheme of codimension 2 subspaces of V ∗. Then the line scheme is

parametrized by

L⊥ = {Q ∈ G2(V ∗) | dimk(Q⊗ V ∗ + I2) ≤ 13}.

One can consider incidence relations between point modules and line modules. If

P is a point module and L is a line module, we say P lies on L and write P ∈ L

if there is a surjective homomorphism L � P . There is another incarnation of the

point scheme as

P = {p ∈ P(V ) | dimk(p
⊥ ⊗ V ∗ + I2) = 15}

and the line scheme has the isomorphic representation

L = {q ∈ G2(V ) | dimk(q ⊗ V ∩ T⊥
2 ≥ 3}.

For p ∈ P, let P = N(p) denote the point module defined by p and for q ∈ L, let

L = M(q) denote the line module defined by q. Then P ∈ L if and only if p ∈ P(q).

Given a point module P , let LP be the subscheme of L consisting of line modules

which cover P . We have:

Proposition IV.2.3. [19] Let R be a quantum P3 and P a point module. Then LP

is nonempty, that is, every point module is covered by a line module.
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Generically dim(Lp) = 0 and in this case, Lp consists of 6 lines counted with

multiplicity.

Given a point p ∈ P3 = P(V ), the scheme of lines l passing through p is a

subscheme of G2(V ). Let L̃p = {l ∈ G2(V ) | p ⊂ l} be the subscheme of G2(V ) of

lines passing through p ∈ P(V ). Recall that G2(V ), for a 4-dimensional vector space

V , can be embedded into P5 via the Plücker embedding. Let Mij denote the ij minor

of a generic 2× 4 matrix and let PM = M12M34 −M13M24 +M14M23 be the Plücker

relation. Let S =
C[Mij]

〈PM〉
then G2(V ) = ProjS.

Lemma IV.2.4. Let p ∈ P(V ) where dimV = 4. Then L̃p
∼= P2.

Proof. By changing basis in V we may assume that p = [1, 0, 0, 0]. Suppose p ⊂ l for

some l ∈ G2(V ) then l is the row space of1 0 0 0

a b c d


so M23 = M24 = M34 = 0. Hence Lp ⊂ VG(M23,M24,M34).

Conversely, suppose l ∈ VG(M23,M24,M34) and l is given as the row space of

M =

a b c d

a′ b′ c′ d′

 .
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Then the matrix

b c d

b′ c′ d′

 has rank 1 so M is row equivalent to

M ′ =

 1 0 0 0

a′′ b′′ c′′ d′′

 .

Hence l ∈ Lp. So we have Lp = VG(M23,M24,M34) ∼= P2.

In the Shelton-Tingey example A we have computed Lp for each of the 20 point

modules. The following result describes Lp for p ∈ P as a subscheme of G2(V ). Let

F1, . . . , Fn be homogeneous polynomials in the Plücker coordinates Mij. We write

VG(F1, . . . , Fn) for Proj
S

〈F1, . . . , Fn〉
.

Theorem IV.2.5. Let A = T (V ∗)/I be the Shelton-Tingey example. Then:

1) Le1 = VG(M23,M24,M34,M
3
12 + iM2

13M14 −M12M
2
14).

2) Le2 = VG(M13,M14,M34,M
3
12 −M12M

2
23 − iM23M

2
24).

3) Le3 = VG(M12,M14,M24,M
3
34 −M2

23M34 − iM2
13M23).

4) Le4 = VG(M12,M13,M23,M14M
2
24 + iM2

14M34 − iM3
34).

Let p = [1, a2, a3, a4] be one of the remaining 16 points. Then Lp is a nonreduced

scheme of dimension 0 consisting of 3 line modules given by

• L1 = VG(M12,M13,M23,M24 − a2M14,M34 − a3M14)

• L2 = VG(M12 −
a2

a3

M13,M14,M23,M24 +
a2a4

a3

M13,M34 + a4M13)
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• L3 = VG(M12,M14,M23 − a2M13,M24,M34 + a4M13)

where the multiplicities are given by mult(L1) = mult(L3) = 1 and mult(L2) = 4.

Proof. By IV.2.4 and its proof, we immediately see that in the case of Lei
, the first

three linear polynomials define the scheme L̃ei
. For the point p = [1, a2, a3, a4],

consider a line l ∈ G2(V ) passing through p. Then l is the row space of

M =

1 a2 a3 a4

0 x y z

 .

Then we have x = M12, y = M13 and z = M14. So it follows that

M23 = a2M13 − a3M12, M24 = a2M14 − a4M12, M34 = a3M14 − a4M13.

So L̃p ⊂ VG(M23 − a2M13 + a3M12,M24 − a2M14 + a4M12,M34 − a3M14 + a4M13).

By IV.2.4 we know L̃p
∼= P2 and clearly VG(M23 − a2M13 + a3M12,M24 − a2M14 +

a4M12,M34 − a3M14 + a4M13) ∼= P2. Hence L̃p = VG(M23 − a2M13 + a3M12,M24 −

a2M14 + a4M12,M34 − a3M14 + a4M13). Since Lp = L ∩ L̃p we next write down the

equations describing L and then intersect with the scheme L̃p.

Using MATHEMATICA we have the following 45 quartic polynomials in the

Plücker coordinates Mij which define the scheme L.

−M14
2M23M24 −M13M14M24

2 + iM13M14M23M34 +M23M24M34
2,

M13M14M23M24 + iM12M14M24
2 + iM23M24

2M34,

M12M13M24
2 + iM14M24

3 −M14
2M24M34 + iM13M14M34

2 +M24M34
3,

−iM13M14
2M23 +M12M14

2M24 +M14M23M24M34,
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iM12M14
2M23 +M14

2M24
2 + iM14

3M34 − iM14
2M23M34

−iM12M23M34
2 − iM14M34

3,

M12
2M14M24 +M14

2M23M24 + iM13M14
2M34 +M12M23M24M34,

M13M14M23M34 + iM12M14M24M34 + iM23M24M34
2,

M14
2M23

2 +M13
2M24

2 − iM13
2M23M34 + iM14M24

2M34 −M14
2M34

2

+M14M23M34
2 −M23

2M34
2 +M34

4,

M13
2M23M24 − iM12M14M23M24 + iM14M23M24M34

−iM23
2M24M34 −M13M14M34

2,

iM13
2M14M23 −M12M13M14M24 −M13M23M24M34,

−2M13M14M23M24,

iM12M13M23M34 −M14M23M24M34 + iM13M14M34
2,

−M12M13M23M24 − iM14M23M24
2 +M13M14M24M34,

−iM12M13M14M23 −M14
2M23M24 − iM13M14

2M34,

−M13M14M23
2 −M13

2M23M24 − iM14M23M24M34 +M13M14M34
2,

−M13M14M23
2 + iM12M14M23M24 + iM23

2M24M34,

M12M13M23M24 + iM14M23M24
2 +M13M14M24M34,

M13M14M23M34 − iM12M14M24M34 − iM23M24M34
2,

−M12
2M14M23 −M14

2M23
2 −M12M14

2M34 −M12M23
2M34 −M14M23M34

2,

−M13
2M23

2 + iM12M14M23
2 − iM14M23

2M34 + iM23
3M34

−iM12M14M34
2 − iM23M34

3,
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M12M13M23
2 + iM14M23

2M24 +M13M14M23M34,

−iM13
2M14M23 +M12M13M14M24 −M13M23M24M34,

iM12M13M14M23 +M13M14M24
2 + iM13M14

2M34

−iM13M14M23M34 −M23M24M34
2,

M12
2M13M24 +M13M14M23M24 + iM13

2M14M34

−iM23M24
2M34 +M13M24M34

2,

−iM12M13M23M34 −M14M23M24M34 − iM13M14M34
2,

−iM13
3M23 +M12M13

2M24 −M13M23
2M34 − iM23M24M34

2 +M13M34
3,

iM12M13
2M23 +M13M14M23M24 + iM13

2M14M34,

M12
2M13M23 +M13M14M23

2 +M12M13M14M34 − iM23
2M24M34,

iM12M13M14M23 −M12
2M14M24 +M14M23

2M24 +M13M23M24
2,

−iM12
2M14M23 −M12M14M24

2 − iM12M14
2M34

+iM12M14M23M34 − iM12M23
2M34 +M23M24

2M34 − iM14M23M34
2,

−M12
3M24 −M12M14M23M24 +M12M23

2M24 + iM23M24
3

−iM12M13M14M34 −M13M24
2M34,

iM12M13M23M24 +M14M23M24
2 + iM13M14M24M34,
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iM12M13
2M23 −M12

2M13M24 + 2M13M23
2M24

+iM23M24
2M34 −M13M24M34

2,

−iM12
2M13M23 −M12M14M23M24 − iM12M13M14M34,

−M12
3M23 −M12M14M23

2 +M12M23
3 + iM23

2M24
2

−M12
2M14M34 +M14M23

2M34,

iM12M13M23
2 +M14M23

2M24 + iM13M14M23M34,

−M12M13M14M23 + iM12
2M14M24 + iM12M23M24M34,

M12
2M13M24 − 2M13M14

2M24 + iM12M14M24
2

+iM13
2M14M34 +M13M24M34

2,

−M13M14
2M23 + iM12M14

2M24 + iM14M23M24M34,

−M12
3M14 − iM13

2M14
2 +M12M14

3 −M12M14
2M23

−M12
2M23M34 +M14

2M23M34,

−M12M13
2M23 + iM12

2M14M23 +M13
2M14M34 + iM12M14

2M34

−iM12M14M23M34 + iM12M23
2M34 + iM14M23M34

2,

M12
2M13M23 −M13M14

2M23 −M13
2M14M24 + iM12M14M23M24,

−M13
2M14M23 + iM12M13M14M24 + iM13M23M24M34,

−M12
3M13 − iM13

3M14 +M12M13M14
2 −M12M13M14M23

−M13
2M24M34 + iM12M23M24M34,

M12
4 + iM12M13

2M14 −M12
2M14

2 +M12
2M14M23 −M12

2M23
2 +M14

2M23
2

+M13
2M24

2 − iM12M23M24
2.
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For each point p in the point scheme we now substitute the three linear equations

describing L̃p into the above equations. For example, the lines passing through e1

are given by the scheme VG(M23,M24,M34). Substituting M23 = 0,M24 = 0,M34 = 0

into the above quartics we find:

M12(M
3
12 + iM2

13M14 −M12M
2
14)

−M13(M
3
12 + iM2

13M14 −M12M
2
14)

−M14(M
3
12 + iM2

13M14 −M12M
2
14)

Therefore it follows that Le1 = VG(M23,M24,M34,M
3
12 + iM2

13M14 −M12M
2
14). The

computations work exactly the same for the points e2, e3, e4.

The computations for the points p = [1, a2, a3, a4] are slightly more involved. We

first substitute M23 = a2M13 − a3M12,M24 = a2M14 − a4M12,M34 = a3M14 − a4M13

into the 45 quartics and obtain as one of the equations

M13(−a3M12 + a2M13)M14(a4M12 − a2M14) = 0.

Thus we have 4 cases to consider: M13 = 0. M12 =
a2

a3

M13. M14 = 0. M12 =
a2

a4

M14.

1. M13 = 0. Then from a computer calculation, we haveM12M14(a4M12−a2M14) =

0. The case M12 = 0 gives the line L1. The case M14 = 0 gives no solutions.

And finally M12 =
a2

a4

M14 also gives no solutions. We note that M12 = 0 yields

a solution precisely because the point p satisfies ia2
2 − a3 + a3

3 = 0.

2. M12 =
a2

a3

M13. We have M13M14(a4M13 − a2M14) = 0. The case M13 = 0 gives
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the line L1 found in Case 1. If M14 = 0 then since p = [1, a2, a3, a4] satisfies

a2
2+a2

3a
2
4 = 0 we get the line L2. Finally the case M13 =

a2

a4

M14 has no solutions.

3. M14 = 0. We immediately have M12M13(a3M12 − a2M13) = 0. If M12 = 0 then

since p = [1, a2, a3, a4] satisfies a2 + ia2
2a4 − ia3

4 = 0 we find the solution L3. If

M13 = 0 then there are no solutions. While if M12 =
a2

a3

M13 then we have the

solution L2.

4. M12 =
a2

a4

M14. We find that M13M14(a4M13 − a3M14) = 0. When M13 = 0

we have no solutions. If M14 = 0 then we have the line L3 and finally when

M13 =
a3

a4

M14 there are no solutions.

Thus we have proved that Lp consists of the three lines L1, L2, L3 when p =

[1, a2, a3, a4].

It remains to determine the multiplicities of the 3 lines, L1, L2, L3 passing through

p = [1, a2, a3, a4]. First consider L1. Let Uij ⊂ P5 denote the affine open set where

Mij 6= 0. Notice that L1 ∈ U14 but L2, L3 are not in U14. To find mult(L1) we need to

calculate the dimension of the local ring Rm where R is the homogeneous coordinate

ring of Lp and m is the maximal graded prime ideal of R corresponding to L1. Let R̂

denote the ring obtained from R by setting M14 = 1 and let m̂ be the image of m in

R̂. Then mult(L1) = dim R̂m̂.

In R̂ we have the relation

(a2 − a4M12)M13(−a3M12 + a2M13).
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Since a2 − a4M12 is not in m̂ after localizing at m̂ we have the relation a3M12M13 −

a2M
2
13. Direct substitution of M2

13 =
a3

a2

M12M13 into the relations of R̂ gives the

relation

(a2 − a4M12)(−a2a3M12 + a2
2M13 + ia3M13).

Again since a2 − a4M12 is not in m̂, after localizing at m̂, we have the relation

−a2a3M12+a2
2M13+ia3M13. We substitute M12 =

M13(a
2
2 + ia3)

a2a3

into the relations of

R̂ and find the relation M2
13(−a3a4 + a2

2M13 + ia3M13). Now −a3a4 + a2
2M13 + ia3M13

isn’t in m̂ so we have M2
13 = 0 in the local ring R̂m̂. Finally we have the relation

M13(a3 − a4M13)(2ia
2
2a3 − 2ia2

2a4M13 + a3a4M13)

in R̂/ < M2
13 >. Since both a3 − a4M13 and 2ia2

2a3 − 2ia2
2a4M13 + a3a4M13 are not in

m̂ we have M13 = 0 in R̂m̂. Hence we have eliminated all variables in R̂m̂. That is

R̂m̂
∼= k and mult(L1) = 1.

An entirely symmetric argument (as above) using the affine open neighborhood

U23 of L3 proves that mult(L3) = 1. Finally we know that Lp consists of 6 points

counted with multiplicity so mult(L2) = 4 follows.
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CHAPTER V

GLOBAL DIMENSION 5 AND QUANTUM P4.

The purpose of this chapter is to explore the geometry of a quantum P4. Unfortu-

nately much of the linear geometry disappears as is evidenced by the main theorem

of this chapter. We have defined the notions of point module and line module. The

obvious generalization is the following definition.

Definition V.1.1. Let d ∈ N ∪ {0}.

a) A d-linear module is a graded A-module M which is cyclic and has Hilbert series

HM(t) =
1

(1− t)d+1
.

b) Let r ∈ N . A truncated d-linear module of length r is a graded A-module M

which is cyclic and has Hilbert series

HM(t) =
r−1∑
n=0

(
n+ d

d

)
tn.

Notice that given a d-linear module one can ”truncate” it to any desired length.

Then 0-linear modules are point-modules, 1-linear modules are line modules. We call

2-linear modules plane modules, and 3-linear modules space modules, with similar

terminology for their truncated counterparts.

Here is the main theorem.
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Theorem V.1.2. The generic k-algebra on 5 generators and 10 quadratic relations

has no truncated point or truncated line modules of length 3.

Corollary V.1.3. The generic k-algebra on 5 generators and 10 quadratic relations

has no point or line modules.

Proof. Given a point or line module M we may truncate it to length 3 to get a

truncated point or line module of length 3. However V.1.2 implies there are no such

modules.

Before beginning the proof of V.1.2 we fix notation. Let k be an algebraically

closed field with char k 6= 2. Let V denote a 5-dimensional k vector space, and define

A = T (V ∗)/I

where T (V ∗) is the tensor algebra on V ∗ and I =
⊕
n≥2

In is a homogeneous ideal

of T (V ∗). It is then clear that A is connected and generated in degree one. If

M =
⊕
n∈Z

Mn is a graded k-vector space with finite dimensional summands then its

Hilbert series will be denoted HM(t) =
∑

n

dim(Mn)tn. Unless otherwise stated all

modules will be considered right modules.

In [18], Shelton and Vancliff prove that there is a scheme which represents the

functor of d-linear A-modules, and a scheme which represents the functor of truncated

d-linear A-modules.
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The basic idea is the following. Let M be a d-linear module. Write M = v0A

and let J = AnnT (V ∗)(v0) where we are considering M as a T (V ∗)-module. Then J is

graded and we keep track of the dimensions of the graded pieces of J inside a product

of Grassmannians. This determines the correct scheme.

A final piece of notation. Let Gn(V ) denote the Grassmannian scheme of n-

dimensional subspaces of V and Gn(V ) denote the scheme of subspaces of V of

codimension n. We also will let G(k, n) denote the Grassmannian of k-planes in

an n-dimensional vector space V .

The goal now is to prove the theorem.

Proof. Suppose that L is a truncated line module of length 3. Write L = v0A. We

consider L as a T (V ∗) module and set J = AnnT (V ∗)(v0). Then J is N-graded and

note that Jn = Tn for n ≥ 3. Now we consider dimensions:

dimV ∗ = 5.

dim I2 = 10.

dim J1 = 5− 2 = 3.

dim J2 = 25− 3 = 22.

dim J1 ⊗ V ∗ = 15.

We have J2 ⊃ I2 + J1 ⊗ V ∗ so it is necessary that

dim(J1 ⊗ V ∗ ∩ I2) ≥ 3.
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So we can find Q ∈ G3(I2) and N ∈ G2(V ) such that N⊥ ⊗ V ∗ ⊃ Q. Let

Ω = {Q ∈ G3(V
∗ ⊗ V ∗) : ∃N ∈ G2(V ) such that N⊥ ⊗ V ∗ ⊃ Q}.

We now compute the dimension of Ω. First we define the incidence relation

Π = {(N,Q) ∈ G2(V )×G3(V
∗ ⊗ V ∗) : N⊥ ⊗ V ∗ ⊃ Q}

We have projection maps π1 : Π → G2(V ) and π2 : Π → G3(V
∗⊗V ∗). Notice that

π1 is surjective as given N ∈ G2(V ) the dimension of N⊥⊗V ∗ is 15. For N ∈ G2(V ),

we have π−1
1 (N) ∼= G3(N

⊥⊗V ∗). By [9] Theorem 11.14 it follows that Π is irreducible

with

dim Π = dim G2(V ) + dim G3(N
⊥ ⊗ V ∗) = 6 + 36 = 42.

Now we analyse π2. It is clear that the image of π2 is Ω. For a generic Q in

im π2, there will exist a tensor λ of rank 3. By the rank of a tensor we mean the

minimal number of pure tensors needed to express it. In other words, there is λ ∈ Q

such that λ = a ⊗ b + c ⊗ d + e ⊗ f with a, c, e linearly independent. In this case

π−1
2 (Q) ∼= {N} where N = Span{a, c, e}⊥. That is, π2 is generically one-to-one.

Hence dim Ω = dim Π = 42.

Now define

Φ = {(H,Q) ∈ G10(V
∗ ⊗ V ∗)× Ω : H ⊃ Q}.

Consider the projection maps π1 : Φ → G10(V
∗ ⊗ V ∗) and π2 : Φ → Ω.

For Q ∈ Ω we can extend a basis to find H ∈ G10(V
∗⊗ V ∗) such that H ⊃ Q. So

π2 is surjective. We also have:



99

π−1
2 (Q) ∼= {H ∈ G10(V

∗ ⊗ V ∗) : H ⊃ Q} ∼= G(7, 22).

So it follows that

dim Φ = dim Ω + dim G(7, 22) = 42 + 105 = 147.

So this proves π1 is not surjective as dim G10(V
∗⊗V ∗) = 150. So this implies that

there are 10-dimensional subspaces H of V ∗ ⊗ V ∗ which contain no elements of Ω.

In other words if we construct our algebra A to have relations given by H then such

an algebra will have no truncated line modules of length 3. We remark that the set

of 10-dimensional subspaces of V ∗ ⊗ V ∗ affording an algebra with no truncated line

modules of length 3 is an open subset of G10(V
∗ ⊗ V ∗) so such algebras are generic.

We now wish to prove that there are algebras with no truncated point modules of

length 3.

Let P be a truncated point module of length 3 and write P = v0A and J =

AnnT (V ∗)(v0) =
⊕
n≥0

Jn. Now considering dimensions we have dim J1 = 4 and dim J2 =

24. Necessarily J2 ⊃ J1 ⊗ V ∗ + I2 so that dim(J1 ⊗ V ∗ + I2) ≤ 24 or equivalently

dim(J1 ⊗ V ∗ ∩ I2) ≥ 6. Write J1 = Span{a, b, c, d}. Then every element of J1 ⊗ V ∗

can be written as a⊗ v1 + b⊗ v2 + c⊗ v3 + d⊗ v4 for some vi ∈ V ∗. Therefore there is

N ∈ P(V ) such that J1 ⊗ V ∗ ⊂ N⊥ ⊗ V ∗. Thus we are led to consider the following

scheme. Let

Ω = {Q ∈ G6(V
∗ ⊗ V ∗) : ∃N ∈ P(V ) such that N⊥ ⊗ V ∗ ⊃ Q}.
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In order to compute the dimension of Ω we introduce the following incidence

relation. Let

Π = {(N,Q) ∈ P(V )×G6(V
∗ ⊗ V ∗) : N⊥ ⊗ V ∗ ⊃ Q}.

We analyse the canonical projection maps π1 : Π → P(V ) and π2 : Π → G6(V
∗ ⊗

V ∗). First consider π1. It is clear that π1 is onto for if N ∈ P(V ), we may choose a

6-dimensional subspace Q of N⊥ ⊗ V ∗. Then (N,Q) ∈ Π and π1(N,Q) = N . As for

the fiber over N ∈ P(V ) we have

π−1
1 (N) ∼= G6(N

⊥ ⊗ V ∗).

So by [9] Theorem 11.14, dim Π = dim P(V ) + dim G6(N
⊥ ⊗ V ∗) = 4 + 84 = 88.

Now consider π2. It is clear that imπ2 = Ω. For a generic Q in imπ2 there

will exist a tensor λ of rank 4. In other words there is λ ∈ Q such that λ = a ⊗

b + c ⊗ d + e ⊗ f + g ⊗ h with a, c, e, g ∈ V ∗ linearly independent. In this case

π−1
2 (Q) ∼= {N} where N = Span{a, c, e, g}⊥. That is, π2 is generically one-to-one.

Hence dim Ω = dim Π = 88.

Now define

Φ = {(L,Q) ∈ G10(V
∗ ⊗ V ∗)× Ω : L ⊃ Q}.

Consider the projection maps π1 : Φ → G10(V
∗ ⊗ V ∗) and π2 : Φ → Ω.

For Q ∈ Ω we can extend a basis to find L ∈ G10(V
∗ ⊗ V ∗) such that L ⊃ Q. So

π2 is surjective. We also have:

π−1
2 (Q) ∼= {L ∈ G10(V

∗ ⊗ V ∗) : L ⊃ Q} ∼= G4(V
∗ ⊗ V ∗/Q).
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So it follows that

dim Φ = dim Ω + dim G4(V
∗ ⊗ V ∗/Q) = 88 + 60 = 148.

So this proves π1 is not surjective as dim G10(V
∗⊗V ∗) = 150. So this implies that

there are 10-dimensional subspaces L of V ∗ ⊗ V ∗ which contain no elements of Ω. In

other words if we construct our algebra A to have relations given by L then such an

algebra will have no truncated point modules of length 3. We remark that the set

of such 10-dimensional subspaces is open in G10(V
∗ ⊗ V ∗) so that algebras with no

truncated point modules of length 3 are generic. This finishes the proof.

We now wish to explore the geometry of the plane and space modules of a quantum

P4. We will describe the scheme of plane modules and the scheme of space modules.

Assume from now on that A has the same Hilbert series as the commutative

polynomial ring on 5 variables, i.e.,

HA(t) =
1

(1− t)5

and that A is a domain.

A description of the right 3-linear modules, or “space”-modules is straightforward.

Let S be a space-module and write S = vSA where vS ∈ S0 = kvS. Now dimA1 = 5

and dimS1 = 4 so it follows that AnnA1(S0) = ku for some u ∈ A1. Now A/uA � S

and since A/uA and S have the same Hilbert series they must be isomorphic. Hence

the scheme of right space modules can be identified with P(A1) = P(V ∗) ∼= P4.



102

We now seek a description of the right plane modules. Consider

Ω2(A, 2) ⊂ Υ2(V, 2) = G3(V ∗)×G6(V ∗ ⊗ V ∗)

Let P⊥ = im(π̄1 : Ω2(A, 2) → G3(V ∗)). For Q ∈ G3(V ∗) we have Q ∈ P⊥ if and

only if there is Q1 ∈ G6(V ∗ ⊗ V ∗) such that I2 + Q ⊗ V ∗ ⊂ Q1. So it is necessary

that dim(I2 +Q⊗ V ∗) ≤ 19 or equivalently

dim(I2 ∩Q⊗ V ∗) ≥ 1.

Hence

P⊥ = {Q ∈ G3(V ∗) : dim(I2 ∩Q⊗ V ∗) ≥ 1}.

We now want to take Q ∈ P⊥ and construct in a canonical way a plane module.

So let Q ∈ P⊥ and choose a basis {v, w} ⊂ V ∗ for Q. Set

M(Q) := A/QA = A/(vA+ wA).

Choose a, b ∈ V ∗ so that 0 6= v⊗a+w⊗b ∈ I2. This is possible as dim(I2∩Q⊗V ∗) ≥ 1.

Since A is a domain, neither a nor b is 0. Let S be the space module A/wA. Let

v̄ = v+wA ∈ S so that v̄A is a submodule of S. If we assume S is graded homogeneous

with respect to GKdim then GKdim(v̄A) = 4. Notice that v̄a = 0 in S so the

canonical map (A/aA)[−1] � v̄A is well-defined. If this epimorphism had a kernel

then GKdim(v̄A) = 3, a contradiction. Hence (A/aA)[−1] ∼= v̄A. So Hv̄A =
t

(1− t)4
.

We have M(Q) ∼= S/v̄A so

HM(Q) = HS −Hv̄A =
1

(1− t)4
− t

(1− t)4
=

1

(1− t)3
.
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So M(Q) is a plane module.

Now let M(r) denote any truncated plane module of length r + 1. Let Q =

AnnA1(vL) where Q = vLA and deg(vL) = 0. Since dimQ = dimA1 − dimM(r)1 =

5− 3 = 2 and since dim(Q⊗ V ∗ + I2) ≤ dimT (V ∗)2 − dimM(r)2 = 25− 6 = 19 we

have dim(Q ⊗ V ∗ ∩ I2) ≥ 1. Therefore Q ∈ P⊥ and M(Q) is a plane module. Note

that M(r) is a quotient of M(Q) and by comparing Hilbert series M(r) ∼= M(Q)(r).

Another useful way of describing the plane scheme is inside the projective space

of the relations P(I2) ∼= P9. Note that plane modules are essentially determined by

2-tensors so we will make the following identification.

Given a pure tensor a ⊗ b ∈ V ∗ ⊗ V ∗, we may consider it as an element of

Homk(V, V
∗) via: for v ∈ V let (a⊗ b)(v) = a(v).b. Extending linearly we make the

following identification

P(V ∗ ⊗ V ∗) ∼= P(Homk(V, V
∗)) ∼= P24.

We may now unambiguously refer to the rank of a 2-tensor λ. Let

G = P(I2) ∩ {λ ∈ P(V ∗ ⊗ V ∗) : rank(λ) = 2}

and let Ḡ be its scheme-theoretic closure in P(V ∗ ⊗ V ∗).

Proposition V.1.4. G = Ḡ and G ∼= P⊥.

Proof. Define a map ψ : G→ G3(V ∗) by ψ(λ) = ker(λ)⊥ for λ ∈ G.

Consider the incidence relation

Ψ = {(Q, λ) ∈ G3(V ∗)× P(V ∗ ⊗ V ∗) : λ ⊂ Q⊗ V ∗ ∩ I2}.
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Let π1 : Ψ → G3(V ∗) and π2 : Ψ → P(V ∗⊗V ∗) be the restrictions of the canonical

projections. For Q ∈ G3(V ∗) we have

π−1
1 (Q) = {(Q, λ) : λ ⊂ Q⊗ V ∗ ∩ I2} ∼= P(Q⊗ V ∗ ∩ I2).

For λ ∈ P(V ∗ ⊗ V ∗) we consider cases for the fiber

π−1
2 (λ) = {(Q, λ) : λ ⊂ Q⊗ V ∗ ∩ I2}.

If rank(λ) ≥ 3 or λ /∈ P(I2) then π−1
2 (λ) = ∅. If rank(λ) = 1 and λ ∈ P(I2) then

λ = a⊗ b for some a , b in P(V ∗) and then

π−1
2 (λ) = {(Q, λ) : a ⊂ Q} ∼= P3.

If rank(λ) = 2 and λ ∈ P(I2) then

π−1
2 (λ) = {(Q, λ) : λ ⊂ Q⊗ V ∗}.

If Q ∈ G3(V ∗) and λ ∈ Q⊗ V ∗ write λ = a⊗ b+ c⊗ d where a, c span Q and b, d

are linearly independent. Then v ∈ kerλ if and only if a(v).b+ c(v).d = 0 if and only

if a(v) = c(v) = 0 which is equivalent to v ∈ Q⊥. So this proves

{(Q, λ) : λ ⊂ Q⊗ V ∗} ⊂ {(Q, λ) : Q⊥ = kerλ}.

Conversely let Q ∈ G3(V ∗) and suppose Q⊥ = kerλ. Write λ = a ⊗ b + c ⊗ d

where a, c and b, d are linearly independent, which we may do as the rank of λ is 2.

Then it follows, as in the above calculation that for v ∈ kerλ, a(v) = c(v) = 0, so

that a and c are in Q. This implies λ ⊂ Q⊗ V ∗. Hence

{(Q, λ) : λ ⊂ Q⊗ V ∗} = {(Q, λ) : Q⊥ = kerλ} ∼= P0.
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Since we are assuming A is a domain, no element of I2 has rank one. So we have

G = Ḡ. Furthermore, π2 is injective on closed points. So by [18] Lemma 2.4, π1,

is also injective on closed points. By [18] Lemma 1.6, it follows that π1 and π2 are

closed immersions. Clearly the image of π1 is P⊥ and the image of π2 is G, so that

Ψ is the graph of ϕ : G3(V ∗) → G where ϕ(Q) = Q⊗ V ∗ ∩ I2. Then G ∼= P⊥ as ϕ is

the inverse to ψ. This finishes the proof.

The subscheme of tensors of P(V ∗⊗V ∗) of rank at most 2 has dimension 15 while

the dimension of P(I2) has dimension 9. So it follows that the irreducible components

of the plane scheme have dimension at least 0. So in this case plane modules always

exist and generically we expect there to be only finitely many of them. The degree

of the subscheme of tensors of P(V ∗ ⊗ V ∗) of rank at most 2 is, by Example 19.10

[9], 175. Then Bezout’s theorem implies: generically there are 175 plane modules

counted with multiplicity.
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