Table of Contents

Chapter 1. General Information for All Graduate Students 2
 Introduction 2
 Graduate Affairs Committee 2
 Full-Time Status 3
 The Advising Process 3
 Grades 4
 Colloquia and Seminars 5
 The Math Library 5

Chapter 2. Graduate Degrees 5
 Degree Programs 5
 Regular Evaluations 6
 M.A. & M.S. Degrees in Mathematics 7
 Doctor of Philosophy 8
 Satisfactory Progress toward the Degree 15
 Sample Timelines 16

Chapter 3. Information for Graduate Teaching Fellows 17
 Part I. The Nature of the Appointment 18
 Part II. The Mechanics of Teaching 19
 Part III. The Art of Teaching 23
 Part IV. General Information 26
CHAPTER 1. GENERAL INFORMATION FOR ALL GRADUATE STUDENTS

Introduction
The faculty and staff of the Department of Mathematics (“the Department”) take this opportunity to welcome you to the University of Oregon. We hope that your experience here will be pleasant and productive. We shall try to do our part in providing you with an outstanding education. However, as is true at all levels of study, the student must do the hard work of learning. If you are a teaching fellow, you have to perform the difficult role of being both a student and a teacher.

The Department and the Graduate School each have specific requirements you must meet in order to complete your graduate degree. Many of these requirements involve paperwork that you must submit, often by a deadline. It is your responsibility to remain informed of the policies and procedures that affect you, and to meet deadlines in a timely fashion.

This handbook should answer many questions about your graduate study and teaching assignments. Read it carefully and keep it as a reference. You can also find this handbook online at http://math.uoregon.edu/graduate/handbook.

Other written resources essential to your academic success include:

- The UO Catalog contains complete details for all academic programs offered by the university. The main page is http://uocatalog.uoregon.edu.
 - The Department degree requirements and math course descriptions can be found at http://uocatalog.uoregon.edu/arts_sciences/mathematics.
 - The Graduate School’s degree requirements can be found at http://uocatalog.uoregon.edu/graduate.
- The Graduate School’s website has academic and GTF-related information, including crucial degree completion deadlines. http://gradschool.uoregon.edu.
- The Department website, http://math.uoregon.edu, has a wealth of pertinent information, from descriptions and syllabi for advanced courses, to seminar schedules and dissertation formatting advice.

If you have any questions, ask the Graduate Coordinator, your advisor, the Assistant Department Head, or the Director of Graduate Studies.

Graduate Affairs Committee
The Graduate Affairs Committee is a departmental committee that deals with all matters concerning graduate students. It consists of several faculty members and three graduate students. The student members may exercise the same rights as the faculty except that they are not allowed to participate in decisions concerning individual students or examinations. Student members are regular voting members of the committee and may raise questions, initiate departmental legislation, etc. Should you feel that there is a problem concerning the graduate program, you may bring it to the attention of the committee via one of these three student members. The graduate student members are selected by the Department Head from a slate elected by the graduate students.
2015-2016 Graduate Affairs Committee Membership

- **Director of Graduate Studies** – Nicholas Proudfoot
- **Ph.D. Subcommittee** – Botvinnik, Phillips, Proudfoot*
- **Graduate Appointments** – Gilkey*, He, Polishchuk
- **Master's Subcommittee** – Berenstein & Polishchuk*
- **At Large** – All faculty members who have taught a 600-level course last year or who have a current Ph.D. student
- **Graduate Advising** – Brundan, He, Isenberg, Sinclair*
- **Student Representatives**** - Andrew Schopieray, Janelle Currey, Bradley Burdick

* chairperson
** New student representatives will be nominated and appointed by the end of spring term

Full-Time Status

To maintain full-time status in the mathematics graduate program, you must register for a minimum of 12 credit hours per term. The courses in which you enroll must follow the program of study that you agree upon with your advisor. Department certification as to full-time status will conform to these rules. If you do not meet these guidelines, the Department will designate you as a part-time student.

The Advising Process

One of the your first and most important responsibilities as a graduate student is to design an appropriate program of study. Until you advance to candidacy, you and your advisor will agree upon a plan of study at the beginning of each term. During the first week of classes, you will fill out an advising form with your advisor, your advisor will sign it, and you will give it to the Graduate Coordinator. If your advisor is unavailable, then you may obtain the signature of the Director of Graduate Studies or of another faculty member.

New Students: New students can find information about advanced graduate courses on the Mathematics website at http://math.uoregon.edu/graduate/advanced15 and in the UO catalog, http://uocatalog.uoregon.edu/arts_sciences/mathematics/#courseinventory.

The Graduate Advising Subcommittee of the Graduate Affairs Committee is charged with advising all new graduate students in mathematics. Members of this committee will meet with each new graduate student during registration week in the fall to determine a suitable program for the student. Each student is assigned an appointment with two faculty members of the Advising
Committee; the schedule of appointments will be posted prior to orientation week. One of these is appointed as the official advisor of the student, and will serve in this capacity until the student forms a Ph.D. committee or leaves the program.

During the advising session you will complete a form that will show which courses are planned for your first term. Once you submit the program, **your advisor must approve in writing any subsequent changes to that program.** (To document an approved change, submit a note or printed email, signed by your advisor, to the Graduate Coordinator.) Changes made without written approval may result in loss of good-standing in the program.

In addition to the advising committee, you should seek advice from fellow graduate students and from the professors who will be teaching the courses, especially since it is often hard to decide whether to take a course at the 500- or 600-level. A 500-level, or “Masters-level,” course will have some undergraduates in the class, but will still be demanding. A 600-level, or “Ph.D. Preparation,” sequence can be quite challenging, and is the standard preparation for one of the qualifying exams. As is elaborated below, if you take two or three 600-level sequences and receive high enough grades to satisfy the sequence requirement for qualification, then you would have to take the qualifying exams the following September. Most first-year students find it best to take at least one 500-level course to help fill in background and have a manageable overall schedule.

Returning Students: A returning student who has not yet advanced to candidacy (that is, passed oral exams) must meet with his or her advisor at the beginning of each academic term and submit a signed program of study form to the Graduate Coordinator by the end of the first week of classes. Once the program has been submitted, **the student’s advisor must approve in writing any subsequent changes to that program.** (To document an approved change, submit a note or printed email, signed by your advisor, to the Graduate Coordinator.) Changes made without written approval may result in loss of good-standing in the program.

At any time you may request a change of advisors through the chair of the Graduate Affairs Committee. This is quite a normal occurrence. Indeed, as the mathematical interests of the student become better focused, the initial advisor may not be the best faculty member for the job. Also, if an advisor is going to be away for an extended period (a term or longer), the advisor should inform the chair of the Graduate Affairs Committee of the absence so that a replacement can be nominated.

Grades

The faculty has reached basic agreement on the meaning of grades for graduate students in the 500- and 600-level courses:

- **A+** Truly outstanding work
- **A** Good Ph.D. or M.S./M.A. level work
- **A-** Clearly Ph.D. level work, but below average. Good at M.S./M.A. level
- **B+** Work which is at the lower margin of acceptable Ph.D. level work, but quite satisfactory at the M.S./M.A. level
- **B** Substandard at the Ph.D. level but satisfactory at the M.S./M.A. level
B- Barely passing at the graduate level
C+ or below. Unsatisfactory at the graduate level

Faculty teaching 600-level courses shall have the option to use different assessment procedures
to grade students who have been admitted to the Ph.D. program (that is, passed qualifying
exams) compared to students in the Master's/Pre-Ph.D. stage of the program.

Colloquia and Seminars

Colloquia are presented throughout the academic year for the entire math department; everyone is
couraged and generally expected to attend the colloquia. Seminars are given once or twice a
week in each general branch of mathematics.

The Basic Notions seminar is intended to be of broad general interest to graduate students.
Students typically find the Basic Notions seminar to be an excellent opportunity to get the flavor
of some different areas of mathematics in a relaxed atmosphere.

The remaining seminars are by nature more specialized. However, attending a seminar in the
field of your choice gives you a chance to see who is working in that area and what is happening
there beyond the 600-level courses.

The Math Library

The Mathematics Library reading room is located in Fenton 218. The reading room contains
some reference materials and Springer Lecture Notes, but most of the books and journals are
located in the stacks behind the reading room. The department prefers to have journals remain in
the library so that they are available for reference, but will allow a brief circulation period for
copying articles.

CHAPTER 2. GRADUATE DEGREES

Degree Programs

A graduate student in mathematics will be entered into one of several post-baccalaureate
programs. In summary these programs are:

A. **Non-degree Program.** Students in this program have no immediate degree
 objectives.

B. **Master's Program.** The objective of students in this program is a Master's degree.
 Students considering continuing for a Ph.D. should instead request enrollment in the
 Pre-Ph.D. Program.
C. **Pre-Ph.D. Program.** Students in this program are taking course work in preparation for the Qualifying Examination in order to be admitted to the Ph.D. program itself. Students spend one or two years in the Pre-Ph.D. Program, depending on prior background.

D. **Ph.D. Program.** Students are admitted to this program upon satisfaction of the Qualification Procedures. As outlined below, after admission to the Ph.D. Program students form a Ph.D. committee, fulfill the Language Requirement and begin preparation for the Preliminary Examination (also called "orals").

E. **Candidacy.** Students in the Ph.D. program are admitted to candidacy upon satisfaction of the Language Requirement and passing the Preliminary Examination. The final defense of the Ph.D. thesis should take place by the end of the third year after the student is admitted to candidacy.

The degrees Master of Arts (M.A.), Master of Science (M.S.), and Doctor of Philosophy (Ph.D.) are all offered in mathematics. Specific departmental requirements for these degrees are discussed in the remainder of this chapter. General requirements of the University, including those pertaining to transferred credit, language, residence and time limits, are listed in the Graduate School section of the University of Oregon Catalog.

Regular Evaluations

Each graduate student in the Mathematics Department will be evaluated during the spring quarter to determine if they are making satisfactory progress toward a graduate degree in mathematics according to the criteria near the end of this chapter. This evaluation will take the form of an email from the Director of Graduate Studies, usually a brief one.

Regular Evaluations by Phases of Degree Program

- **Pre-Ph.D. Program:** The Ph.D. Subcommittee of the Graduate Affairs Committee will perform the evaluation of students who have not passed the qualifying exams, based on the coursework of the student in the current year and on faculty comments.

- **Ph.D. Program, before advancement:** The evaluation of students who have qualified but not yet advanced to candidacy will also be performed by the Ph.D. Subcommittee, based on coursework and the submission of an “Orals Plan” as outlined below.

- **Ph.D. Program, past advancement.** The preliminary (oral) examination will replace the regular evaluation in the year in which a student advances to candidacy. In subsequent years, a student will be evaluated by his or her own dissertation committee. The student will meet with his or her committee during the spring term (or at least with those committee members who are available) and provide a brief oral and/or written description of his or her progress toward completing a thesis. By the end of the academic year, the

1 While this document uses the terms “thesis” and “dissertation” interchangeably to indicate the final document of the Ph.D., the Graduate School makes a clear distinction between the terms. When referring to the Graduate School’s website and publications, make sure to follow instructions for “dissertation”. It uses “thesis” only for master’s degrees.
committee will produce a written evaluation which will be shared with the student and submitted to the Graduate Coordinator for inclusion in the student’s official records. The Ph.D. Subcommittee will read this evaluation and respond via email to the student and his or her advisor.

Master of Arts and Master of Science Degrees in Mathematics

All mathematics courses to be applied to degree requirements, including associated reading courses, must be graded. Grades of C+ or below are considered to be failing grades and may not be counted towards Master’s degree requirements. The GTF teaching seminar does not count towards the Master’s degree, nor do any other 1-credit seminars such as the Colloquium, the Basic Notions seminar, etc. Students at the Master’s level – that is, those pursuing a terminal Master’s degree or those who have yet to qualify for the Ph.D. program – must obtain permission from either the Master’s Subcommittee or the Ph.D. Subcommittee of the Graduate Affairs Committee to enroll in any reading courses.

To earn the Master’s degree, you must fulfill the following course requirements and conditions, and meet with the chair of the Master's Degree Subcommittee *before the end of the second week of the term the degree is to be received* in order to verify that the requirements have been met.

A. Complete 45 graduate credit hours, subject to the following provisions:

1. At least 9 must comprise 600-level mathematics courses or seminars, excluding 605.
2. At most 15 may be *outside* the field of mathematics.

B. Complete three of the sequences listed below, at least one of which is at the 600 level.

500-Level Sequences

1. Math 513, 514, 515 (Introduction to Analysis)
2. Math 531, 532, 533 (Intro to Topology & Intro to Differential Geometry)
3. Math 544, 545, 546 (Introduction to Abstract Algebra)

600-Level Sequences

1. Math 647, 648, 649 (Abstract Algebra)
2. Math 634, 635, 636 (Algebraic Topology)
3. Math 637, 638, 639 (Differential Geometry)
4. Math 616, 617, 618 (Real Analysis)
5. Math 616, 672, 673 (Theory of Probability)

In the unlikely event that none of these sequences are appropriate, you may request an

2 Summer courses are the exception to this requirement; summer courses may only be taken with the grading option of pass/no pass.

3 Any combination such as 616/617/515 or 647/648/546 or 643/635/533 involving some 600-level courses but at least one 500 level course counts as a 500-level sequence.
individually tailored sequence from the Masters Subcommittee of the Graduate Affairs Committee.

C. Take a final written or oral examination, designed by the chair of the Master’s Degree Subcommittee. You may request a waiver of the final examination if the GPA for all mathematics courses carrying graduate credit is at least 3.25 (B+) and the GPA for all 600-level courses (including reading) is at least 3.00 (B).

Doctor of Philosophy

Requirements for Candidacy

The Ph.D. is a degree of quality, not to be conferred in routine fashion after the completion of any specific number of courses, or after attendance in graduate school for any specific number of years. It is reserved for candidates of high potential who have demonstrated not only a comprehensive understanding of mathematics but also a measure of creative talent.

Although requirements of time and credit are secondary, every candidate must satisfy the basic requirements of the Graduate School, namely, three years of full-time study beyond the bachelor's degree, one of which must be a year in residence at the University. Thus, three years of full-time study is a necessary but not a sufficient condition.

Every Ph.D. student must take three sets of examinations (the qualifying exams, the language exam, and the preliminary exam), have the thesis approved by the members of his or her dissertation committee, and formally defend the thesis orally. Waivers of any of these requirements will be available only under the most exceptional circumstances. If you wish to be considered for a waiver must petition the Director of Graduate Studies in writing.

Stages of the Program

There are three principal stages for a student in the process of obtaining the Ph.D. in mathematics.

- **Pre-Ph.D. Program.** This is the stage for students intending to enter the program who have not completed the qualifying procedure.
- **Ph.D. Program.** This is the stage for students who qualified for the Ph.D., and are completing the Language Requirement and preparing for the oral Preliminary Examination.
- **Candidacy.** Students are advanced to candidacy after satisfying the Language Requirement and passing the Preliminary Exam. At this stage students are working primarily on research and their dissertations.
The Pre-Ph.D. Program

Students entering the graduate program in Mathematics will review their objectives and previous background with their advising committee. On the basis of this consultation, it will be decided whether they should spend one or two years in the Pre-Ph.D. Program before taking the Qualifying Examination.

The Qualifying Examination should be taken in the September immediately following satisfactory completion of courses meeting the sequence requirements for qualification as detailed below (a minimum of two 600-level sequences and one other sequence at the 500- or 600-level).

Students spending two years in the Pre-Ph.D. Program will spend the first year taking three 500- or 600-level sequences, at most one of which is at the 600-level.

Students spending one year in the Pre-Ph.D. Program, or two-year students in their second year, will take three 500- or 600-level sequences, at least two of which are at the 600-level, so as to meet the sequence requirements for qualification detailed below.

A student initially advised to spend one year in the Pre-Ph.D. Program may decide in consultation with his or her advisor that it is appropriate to switch to spending two years in the Pre-Ph.D. program. In this case, the student should transfer to 500-level courses in order not to complete more than one 600-level sequence by the end of the year. The student’s advisor must give written approval of such a change to the student’s program of study. (A brief note or printout of an e-mail signed by the advisor and included in the student’s official record maintained by the Graduate Coordinator is sufficient for this purpose.)

Qualification Procedure

The Graduate Affairs Committee uses several criteria to determine whether to designate a student as “Qualified” and thereby formally admitted to the Ph.D. program. The Qualification Procedure comprises the steps to qualification.

The objective of the Qualification Procedure is to determine whether the student has mastered some important topics in higher mathematics and has sufficient mathematical ability to justify continuation in the Ph.D. Program. The Graduate Affairs Committee uses the following criteria to determine qualification:

- **Criterion 1:** Satisfactory performance in all courses and seminars taken as part of the Pre-Ph.D. Program;
- **Criterion 2:** Completion of three sequences meeting the sequence requirement detailed below at the level commensurate with work towards a Ph.D.;
- **Criterion 3:** Satisfactory performance on the Qualifying Examinations.

We emphasize that while some graduate programs in mathematics rely exclusively on performance on written examinations, all three criteria must be met for qualification in our program.
Sequence Requirement
The sequence requirement is intended to ensure all prospective Ph.D. students have a broad base of knowledge of mathematics as a whole. The precise requirements are as follows:

- Completion of at least one sequence from each of the three areas analysis/probability, topology/geometry and algebra, as listed below;
- The sequences in at least two areas must be at the 600-level;
- All courses applied to this requirement must be completed with a grade of B or above;
- The average grade in each sequence applied to this requirement must be at least B+.

The allowed sequences for each of the three areas are as follows.

AREA 1: ANALYSIS/PROBABILITY.
- 513/514/515 Introduction to Analysis
- 616/617/618 Real Analysis
- 616/672/673 Theory of Probability

AREA 2: GEOMETRY/TOPOLOGY.
- 531/532/533 Introduction to Topology / Differential Geometry
- 634/635/636 Algebraic Topology
- 637/638/639 Differential Geometry

AREA 3: ALGEBRA.
- 544/545/546 Introduction to Abstract Algebra
- 647/648/649 Abstract Algebra

Note that mixed-level sequences such as 616/617/515 may also be applied to this sequence requirement but count as 500-level sequences without exception.

The Qualifying Examination
The Qualifying Examination is given the week before the start of fall term and, if necessary, the week before the start of winter term. The exam consists of two separate three-hour written examinations on two 600-level graduate sequences, which must be chosen from two different areas as specified above. For example, you cannot take separate exams in both analysis and probability, or in both algebraic topology and in differential geometry.

A student in the Pre-Ph.D. Program who is not admitted to the Ph.D. Program because of unsatisfactory performance on the Qualifying Examinations may take the exam a second time in the first week of the winter term. On the second try the entire Qualifying Examination must be taken even if the student's work on part of it was satisfactory the first time. A different pair of courses may be used as the basis for the second try, if approved by the student’s advising committee.
A student entering the graduate program may, with the consent of the Ph.D. Subcommittee, take the Qualifying Examination the week before classes start for the fall term that he or she enters the program. Unsatisfactory performance on the examination at this stage will not affect the student's status or opportunity to take the examination in the second year of the Pre-Ph.D. Program. The student may not sit for the examination again in the winter term of their first year.

The Decision Process
Shortly after the Qualifying Examination has been administered, the Graduate Affairs Committee will determine qualification using the above three criteria. Students who are deemed qualified are admitted to the Ph.D. Program. For a student who is required to try the Qualifying Examination a second time, after the second attempt, the Graduate Affairs Committee reconsiders the file and places the student in one of three categories: qualified (i.e., admitted to the Ph.D. Program), conditionally qualified, or definitely not qualified.

A decision that the student is definitely not qualified is final and prohibits entrance to the Ph.D. program in Mathematics at the University of Oregon.

Some students who perform satisfactorily on the Qualifying Exam as entering students may be conditionally qualified because they need to fulfill a sequence requirement in the area in which they did not take the exam. In general a conditionally qualified student is asked by the Ph.D. Subcommittee to complete an additional assignment, such as some written work, an oral examination, or a presentation of some piece of mathematical literature. On the basis of this additional evidence, the student is then judged qualified or definitely not qualified.

The Ph.D. Program

Choosing an Advisor
Once you have been admitted to the Ph.D. Program, you should begin the process of finding a suitable Ph.D. advisor. It is common practice to spend one or more terms taking reading courses from potential advisors before asking someone to become your official advisor.

To assist you in the process of selecting an advisor, the chair of the Graduate Affairs Committee compiles a list of faculty members with information about their research interests, current students, plans for sabbaticals or other extended absences, etc.

Orals Plan
An “Orals Plan” is required by week 7 of the spring term in the academic year in which you are formally admitted to the Ph.D. program. The Orals Plan formally designates your choice of Ph.D. advisor, who will serve as chair of your Ph.D. committee. The Orals Plan is a short document that outlines your plan of study for the next year, lists materials for the language requirement (see below), and names three additional members for your Ph.D. committee. It is common practice, though not a requirement, to have one departmental member of your Ph.D. committee from outside your specialty. Students often find that access to such a perspective helps improve the written and oral exposition of their thesis work.

For your convenience, an Orals Plan form is available on the math website.
It is important to note that after you advance to candidacy (i.e., complete the language requirement and preliminary oral exam), university policy requires you to add an “institutional representative” to your dissertation committee. This is a university faculty member from outside the mathematics department.

Each student’s Ph.D. committee is required to meet at least once a year in years after the student has advanced to candidacy. During this meeting, the student will provide a brief oral and/or written description of his or her progress toward completing a dissertation. The committee will then produce a written evaluation which will be shared with the student and submitted to the Graduate Coordinator for inclusion in the student’s official records by the end of the academic year. In addition, Ph.D. students are encouraged to report on their work and readings in appropriate seminars.

Language Requirement

The department expects Ph.D. candidates to be able to read mathematical material in a second language selected from French, German, or Russian. The purpose of the foreign language requirement is that you learn to accurately decipher *mathematics* written in a foreign language.

It is expected that most students will aim to meet this language requirement during the year after passing the qualifying examination. *At the very latest, you must satisfy the language requirement before you take the oral exam.* If in exceptional circumstances you need to delay the language requirement until after the oral examination, you must submit a formal petition *in writing* to the Ph.D. Subcommittee of the Graduate Affairs Committee.

To satisfy the Language Requirement, set up a meeting with a faculty member of your choice who works in the area of mathematics that you wish to specialize in. This is typically your Ph.D. advisor if you have already formed your Ph.D. committee, or someone who you would like to ask to become your Ph.D. advisor if you have not yet found one.

During the meeting, you should get advice as to a suitable part of a paper or book written in French, German or Russian that would be mathematically valuable for you to study. You should also be interested in the material yourself -- if you are not or if your advisor does not come up with a suitable reference, try asking someone else to get a suggestion you like better.

You should then aim to read, translate, and digest the mathematics contained in the paper or book. The goal is to acquire the necessary skill to read the foreign language while at the same time learning some useful mathematics. You should meet again with the faculty member to discuss the mathematics after you are satisfied that you understand the material. When the faculty member has verified that you have successfully understood the material, he or she will sign the Language Exam Requirement Form. You can find the form on the math website, or pick up a copy from the Graduate Coordinator.

Preliminary Exam

A student is advanced to Candidacy upon passing the Preliminary Examination. The student is
not normally eligible to take this exam before fulfilling the Language Requirement. You should take the Preliminary Exam no later than June of the academic year after the year in which you were admitted into the Ph.D. program. If you do not pass the Preliminary Exam within the first two years in the Ph.D. Program, you must submit a formal petition in writing to the Graduate Affairs Committee for continuance in the program.

Examination Syllabus
The Preliminary Examination is a two-hour oral examination administered by your Ph.D. committee, emphasizing the basic material in your general area of interest. You and your advisor will create an Examination Syllabus listing the topics to be covered in the exam. The Syllabus may specify all or part of particular courses, textbooks, notes or published papers. It must satisfy the following general guidelines:

- **the syllabus must not be narrowly limited to just one or two special topics;**
- **the syllabus should represent what you absolutely need to work in your area, rather than an extensive list of commonly known topics, since you will be responsible for everything listed on your syllabus;**
- **the syllabus must include some material which is not primarily expository, meaning published research papers or preprints rather than textbooks.**

Aspects of the Syllabus - such as its length, level of detail, and mix of types of materials - require the approval of your full Ph.D. committee, not just your advisor's approval. All members of your Ph.D. committee must indicate their approval in writing (usually by signing the syllabus).

After devising the syllabus in consultation with your committee, you should submit a copy of the proposed syllabus to the Ph.D. Subcommittee. The Subcommittee may either approve it or require changes in the syllabus before granting approval.

You must complete the process of drafting the Syllabus and obtaining approval at least five months in advance of the examination. Since satisfactory degree progress and, therefore, GTF reappointments are dependent on advancing to Candidacy, you and your advisor are strongly advised to be mindful of this deadline. A student and advisor may petition to have an exam moved, but are only encouraged to do so when a student’s rapid progress would be best served by such a move.

The format of the Preliminary Examination is also to be determined by your full Ph.D. committee, not just your advisor. Students are urged to discuss this with each committee member, since unclear expectations about this format can adversely affect the exam.

It is your responsibility to arrange the time and place of the Preliminary Exam. Clear the time with your committee and ask the Graduate Coordinator to schedule a room for the exam. If you make a room reservation on your own, please inform the Graduate Coordinator of the date, time, and location of your exam.

A suggested practice for final preparation in the weeks leading up to the exam is for the student to write a brief expository summary of the results from the sources in their Syllabus that they are responsible for, stating theorems, outlining proofs (with reference to their sources), and working
out important examples. Producing such a document promotes the ability to synthesize material which a student needs to have to begin research.

Take the Oral Exams Results form to your Preliminary Examination. At the end, your advisor will mark the result and sign the form. Give the signed form to the Graduate Coordinator, who will start the advancement process in the Graduate School’s database.

A student who does not pass the Preliminary Examination may petition for a second exam. The petition should be directed in writing to the Director of Graduate Studies. It will be approved only at the discretion of the Ph.D. Subcommittee. Third exams will not be allowed.

Candidacy

Once you have passed the Language Requirement and the Preliminary Examination, you have advanced to candidacy for the Ph.D. Degree. At this stage your major efforts should be devoted to completion of a thesis.

Ph.D. Committee Institutional Representative

The Graduate School requires you to have an institutional representative (a.k.a. “outside member”) on your doctoral committee. Your committee must be fully appointed and approved by the Graduate School no fewer than 6 months prior to your defense date. You must have an institutional representative on your dissertation committee before the Graduate School can approve it, so it behooves you to take care of this as soon after advancement as you can. Otherwise your timeline to degree completion could be delayed.

If, after the Graduate School approves your committee, the Institutional Representative is changed, your defense date timeline will be set back by three months.

Thesis

A Ph.D. candidate must submit a thesis containing substantial original work in mathematics. Five copies of the thesis *must be given to the Graduate coordinator for distribution to the members of the examining committee no less than four weeks before the proposed time for the final oral presentation.* The final oral presentation will not be scheduled until these copies of the thesis are in the hands of the Graduate Coordinator.

The thesis must conform to the Graduate School’s *Style Manual for Theses and Dissertations*. A template Latex file and formatting advice can be found on the departmental web page. If you plan to include co-authored or previously published material in your dissertation, you must complete and submit the Content and Style Request Form (see the Graduate School’s website).

Students working toward a Ph.D. or professional doctorate must register for a minimum total of 18 hours in Thesis (603); with department approval, up to 6 of 18 hours may be in Research (601). Credit for Thesis and Research is recorded on a P/NP basis.

4 Please remember that while the Department uses the word thesis to refer to the final document of the Ph.D., the Graduate School uses only the term dissertation.
At the time of the doctoral defense, your committee will indicate whether it approves your dissertation. After a successful defense, you will upload your dissertation to the Graduate School via ProQuest/UMI. You also need to submit the signed Thesis/Dissertation Submission Form and Document Approval to the Graduate School.

Final Defense of Thesis

You are expected to complete the formal defense of your Ph.D. thesis by the end of your fourth year in the Ph.D. program. Thus, if you passed your qualifying exams in your third year at UO, then you should graduate by the end of your sixth year. Should you desire extra time, you must petition the Director of Graduate Studies in writing, and give both written and oral summaries of progress on your thesis to a group of faculty including your Ph.D. committee, the Ph.D. Subcommittee, and other faculty deemed appropriate by your advisor and the Director of Graduate Studies. The granting of such additional time is the exception rather than the rule.

The thesis defense will normally take place during the term in which the degree is awarded. In this defense, which shall be open to the public, the candidate will expound the major ideas and findings of the thesis and be questioned by the committee and interested parties.

Scheduling the Defense

You must schedule the defense and obtain Graduate School approval via the GradWeb online database. Start by arranging a time and date with your committee that is before the Graduate School’s deadline. Then ask the Graduate Coordinator to reserve a room for your defense.

Once you have the date, time, and location set, you will file the “Application for Final Oral Defense” in GradWeb. Do this at least one month prior to the day you plan to defend. The Graduate School must approve your application at least three weeks prior to the proposed defense date.

Please refer to the Graduate School’s website for the deadline dates for the term in which you plan to graduate.

KEY REMINDERS:

- If the chair of your Ph.D. committee has to be changed--it MUST be done 6 months before the oral defense.

- You must be registered for at least 3 credit hours the term you plan to graduate, and the term immediately prior.

Satisfactory Progress Towards Degree

Criteria for Satisfactory Progress in the Master’s Program

- Complete 12 credit hours per term of courses, reading courses, and/or thesis work appropriate for the degree
- Maintain GPA of at least 3.0 each term
Meet with advisor prior to the start of every fall term to devise a program of study. This program of study must be established in writing. Any deviations from the program must be approved in writing by the advisor.

Criteria for Satisfactory Progress in the Pre-Ph.D. Program
- Complete 12 credit hours per term of courses, reading courses, and/or thesis work appropriate for the degree
- Maintain a GPA of at least 3.0 each term
- Meet with advisor prior to the start of every fall term to devise a program of study. This program of study must be established in writing. Any deviations from the program must be approved in writing by the advisor.
- Complete the Sequence Requirement detailed on page 10, or successfully petition for an exemption, by the end of the second year of the pre-Ph.D. program
- Take the written Qualifying Examinations immediately prior to the start of the fall term following the completion of the Sequence Requirement.

Criteria for Satisfactory Progress in the Ph.D. Program
- Complete 12 credit hours per term of courses, reading courses, and/or thesis work appropriate for the degree
- Maintain a GPA of at least 3.0 each term
- Meet with advisor prior to the start of every fall term to devise a program of study. This program of study must be established in writing. Any deviations from the program must be approved in writing by the advisor.
- Satisfy the Language Requirement and pass the Oral Comprehensive Exam (“Preliminary Exam”) by June of the year after the academic year in which you were admitted to the Ph.D. program.
- Meet with your Ph.D. committee at least once a year after passing the preliminary exam. During the meeting, you must provide a brief oral and/or written description of progress toward completing the dissertation. The committee will produce a written evaluation and provide to you and to the Graduate Coordinator for your student file.
- Substantially complete all requirements for the Ph.D. within four years of admission to the Ph.D. program.

Sample Timelines

In general, the Ph.D. program (including the pre-Ph.D. portion) is designed to be completed in five or six years. We have a strong commitment to this timeframe, believing it to be (in most cases) in the best interest of the students. Of course exceptions occur, and occasionally students will stay in the program for seven years. But this is the exception rather than the rule.

There are also two separate issues to be aware of: there is the issue of being a student in good standing in the graduate program, and there is the issue of receiving a GTF appointment. These issues do not go hand in hand. Students who are unable to complete their degree in six years might be in good standing and continue in the program for a seventh year, and they might also receive a GTF appointment for that year---but the former does not guarantee the latter.
Here are two sample timelines:

Student #1:

September 2000: Begin program as a Pre-Ph.D. student.
September 2002: Take and pass Qualifying Exam.
June 2004 (at the latest): Pass Preliminary Examination; advance to candidacy.
June 2006: Give oral defense and graduate.

Note that under the program guidelines the above student actually has until June of 2007 to give his or her oral defense. But as described in the Graduate Duties and Responsibilities Statement (GDRS), the student might not receive a GTF appointment in the department for that seventh year. In winter of 2006 the matter would have to be considered by various committees as described in the GDRS.

Student #2:

September 2000: Begin program as a Pre-Ph.D. student.
September 2001: Take and pass Qualifying Exam.
June 2003 (at the latest): Pass Preliminary Examination; advance to candidacy.
June 2006 (at the latest): Give oral defense and graduate.

In this example, note that the student would be part of the Ph.D. (as opposed to pre-Ph.D.) program for the academic years 2001-2002, 2002-2003, 2003-2004, 2004-2005, and 2005-2006. In winter of 2005 the matter of a GTF appointment (for a fifth year in the Ph.D. program) would have to be considered by various committees as described in the GDRS.

CHAPTER 3. INFORMATION FOR GRADUATE TEACHING FELLOWS

The purpose of this chapter is to provide an orientation for GTFs to university and department policies and to point out some of the problems faced in working day to day.

In Part I you will find a brief outline of the duties of and expectations of our GTFs. You should also familiarize yourself with the Graduate Duties and Responsibilities Statement available on the Graduate School’s website (http://gradschool.uoregon.edu/gtf/rights-and-responsibilities/gdrs) that gives a formal description of these matters.

The material in Part II is university and departmental policy, and it is expected that GTFs will follow these regulations and policies without exception.
Part III provides some helpful comments on the art of teaching, based on the experience of various contributors to this guide.

Part IV describes some services provided to instructors by the department and other general information.

PART I. THE NATURE OF THE APPOINTMENT

Normally an instructional GTF in the Department of Mathematics will be assigned duties of one of three basic types: teaching an elementary course, assisting in recitation sections, or assisting in one or more advanced courses. General descriptions of the three types of assignments for instructional GTFs are:

1) Teaching an elementary course
 - Conducting the class (usually 4 contact hours);
 - Preparing lectures and exams (this may include submitting midterm exams to course coordinators well in advance of exam date);
 - Holding office hours (a combined total of 4 hours per week in scheduled office hours and organized help sessions);
 - Grading quizzes, midterms and final exams;
 - Reading homework papers and/or supervising an assigned student grader, or answering WeBWorK questions via email;
 - Maintaining and submitting grade records in accordance with departmental regulations;
 - Assisting with preparation and proctoring of the final exam;
 - Assisting with placement testing, or other duties (up to one half days per term);
 - Possibly attending meetings of course instructors.

2) Assisting in recitation sections
 - Assisting in recitation sections;
 - Conducting discussion sections (usually 4 contact hours per week);
 - Preparing for discussion sections (4 hours per week);
 - Possibly preparing quizzes;
 - Holding office hours (a combined total of 4 hours per week in scheduled office hours and organized help sessions is required);
Grading quizzes and exams;

Possibly reading homework papers and/or supervising an assigned paper marker (3-4 hours per week) and/or answering WeBWorK questions via email;

Meeting with course instructor (1 hour per week);

Proctoring midterm and final exams;

Assisting with placement testing, or other duties (up to one half day per term).

3) Assisting in advanced courses

Holding office hours (at least 4 hours per week of scheduled office hours are required);

Reading homework papers;

Proctoring midterm and final exams;

Assisting with placement testing, or other duties (up to 3 half days per year);

Working with course instructor.

A GTF should expect an average workload of 14-20 hours per week. The maximum workload is 215 hours per term for a 0.49 FTE appointment as negotiated in the Collective Bargaining Agreement between the State of Oregon and the GTFF. This agreement is detailed in the Graduate Duties and Responsibilities Statement, which all GTFs in the Department of Mathematics should be aware of; it is also available on-line at http://gradschool.uoregon.edu/ght/rights-and-responsibilities/gdrs.

Please look especially at the section that formally describes the appointment and reappointment processes for GTFs, and the section on Satisfactory Progress for graduate students in the Mathematics Department.

Note the Department does not normally appoint GTFs for more than two years in the Masters’ or Pre-Ph.D. program, or for more than four years in the Ph.D. program (i.e. four academic years from the year the student passes the qualifying examination inclusive).

PART II. THE MECHANICS OF TEACHING

Sources of Information

You should read the sections of the university catalog dealing with university regulations, group requirements, grading systems, etc. These are available on-line at http://uocatalog.uoregon.edu/admissiontograduation/registration_policies/.

For department policies and information about major requirements, courses and programs, you should also read the mathematics sections of the university catalog, available on-line at
For advising or for information you don't have, students should be sent either to the department office or the head undergraduate advisor (you can also refer them to the undergraduate advising web-site at http://math.uoregon.edu/undergraduate for contact information).

Last but not least, please be familiar with the department’s Instructor Policy Manual, available on the Department website. Many common questions about teaching policy and practice can be answered by that document.

Office Hours and Help Sessions

The time of your office hours should be announced at the beginning of the term, posted at the entrance to your office and held as scheduled. Students should also be informed of Help Sessions, which may come at more convenient times for them than your office hours. If for some reason you have to cancel an office hour, find a substitute or leave a note making other arrangements.

Meeting Classes

The students are paying for, and it is your responsibility to provide, a full period of mathematics instruction at every scheduled class meeting. If, because of illness or accident it is impossible to meet a class as scheduled, do not cancel it, but notify the Assistant Department Head the day before, if possible, or at 8:00 AM the day class is scheduled. If possible, find a substitute to take your class, but if you are unable to do this, the Assistant Department Head will try to find one for you. Of course, it helps to give us as much notice as possible and to inform the substitute of where you are in the textbook. Notify the department if you will be out of town during any working days of the term and where you can be reached if possible. This is particularly important during exam periods, in case there is a question about a grade, etc.

Course Coordinators and Textbook Committees

For each lower division mathematics course, a faculty member is appointed as course coordinator. The course coordinator will prepare a course outline, which is intended as a guide, and does not have to be followed to the letter. However, each instructor has the responsibility to cover the theory and problems in the course outline. If there is a serious departure, it may jeopardize your student's chances on the final examination in courses having a common final and leave them unprepared for the next course.

Special problems should be taken to your course coordinator, who in turn might have to consult the Assistant Department Head or the Department Head. These problems include special grades, such as incompletes, and cheating.

Early in the spring the chair of the Undergraduate Affairs Committee appoints textbook committees for the basic lower division mathematics courses. Some graduate teaching fellows and faculty are appointed to these committees. These committees' primary task is to decide whether the present textbook should be retained and, if not, to select a new textbook. Such
decisions necessarily involve various aspects of the course, including the course content and outline. Critical, and preferably constructive, comments on the courses or texts are welcomed by the textbook committees and course coordinators.

Examinations and Grading

(a) **University Grading Policy**

A detailed description of the grading policy is available in the on-line university catalog. Make sure you understand the details of the policy. Before turning in term grades, GTFs should discuss them with the course coordinator.

Basically, students elect one of two grade options, either a P/NP option, or a pass differentiated (graded), in which case of the grades to be used are A, B, C, D, or F. You may add a plus (+) or a minus (-) as the student's work warrants. The grades of F and N mean unsatisfactory performance.

(b) **Grades I and Y**

The grade of I (incomplete) can be given only when, for some unavoidable reason, a student, otherwise doing satisfactory work, is unable to complete all of the requirements for the course on time. When submitting a grade of I to the Registrar, the instructor must obtain from the office staff and complete an **INCOMPLETE CONTRACT** form which:

a. describes the reason for granting the incomplete;
b. describes the mechanism for removing the incomplete, including a time limit for removing it;
c. must be signed by the instructor and, if possible, the student;
d. in the case of GTFs, must have the signed approval of the Head or the Assistant Head.

Once each term the assistant head will review all outstanding grades of I; any that have not been removed within the specified time limit will be referred back to the instructor who should submit the grade change online.

Undergraduate students have a maximum of one calendar year to make up an incomplete mark assigned by a UO instructor. Earlier deadlines may be set by the instructor, dean, or Department Head. Failure to make up the incomplete by the end of one calendar year will result in the mark of I automatically changing to a grade of F or N. For students graduating, removal of incompletes must be filed with the Office of the Registrar by the middle of the student’s term of graduation. Incompletes that are not removed will be automatically changed to a grade of F or N prior to conferral of the degree. Supplemental grade changes must be filed no later than thirty days after the degree is awarded.

The grade of Y (no basis for grade) is for students registered at the end of the term, who turned in no work and did not take any of the scheduled hour exams or the final.

The special grades should not be promised or given to students without prior approval of the Assistant Department Head or the Department Head. If you have cases where you feel the grades
of I or Y are appropriate, bring the matter to the attention of one of the above staff.

(c) Examinations

At least one-hour exam (usually 2 or 3), several quizzes and the final exam are normally given in each class. Take-home finals are not given in lower division courses.

Copy machines are available in 202 Fenton and 110M Deady for use by GTFs in preparing teaching materials. Each GTF will receive an access code for copier use. If you are housed in Deady Hall your office key will gain you admission to the mezzanine. GTFs housed in Fenton Hall may use the machine located in the department office.

(d) Grading and Record keeping

Each instructor is required to keep written records of grades on hour exams, quizzes and the final exam. These should be available, along with the method used to compute grades, upon request by the faculty member in charge of the course. Although there is latitude for different grading procedures, the final grades must show differentiation between the stronger and the weaker performances in the class. The department’s grading standards are on the department web page at http://math.uoregon.edu/wp-content/uploads/2014/12/MathGradingStandards-1tli4lj.pdf. Grade books are kept for seven years after teaching a class because the student can challenge his grade at any time during this interval. GTFs should leave their completed grade records in the department office before finally leaving the university.

Changes of grades by GTFs should be approved by the assistant head or the head of the department. Ordinarily only arithmetic mistakes or new information such as a written excuse from a doctor, etc., are bases for changes in grades. The University of Oregon has a "Student Records Policy", copies of which are available in the department office. Paragraphs 8 and 9 of the policy are quoted below for your information and compliance.

8. Grade Books and Attendance Records

a. The grade book contains the faculty member's notations of students' progress in their class and may contain records of the students' attendance.

b. Grade books and attendance records are retained by the individual faculty member of the department or school for at least seven years after the class was taught.

9. Student's Examinations and Class Papers

a. Examinations, reports and other class papers may be retained by the faculty member only if he/she either:

 1. Communicates to the student his intention to retain such papers at the time of assigning them; or

 2. Obtains the consent of the student to retain such papers.

b. All other examinations, reports and class papers must be returned to the student in such a way as to protect the student's right to confidentiality.
The policy on instructor’s grade records can be found at http://library.uoregon.edu/records/schedule/166-475-0110.html.

(e) Returning final exams

According to the university records retention schedule all of your student’s final exams should be kept in your office for at least one term after they’ve been given. Students must be allowed to see their completed (and graded) final and you should be prepared to go over it with them. You might, at your discretion, return a final to a student earlier. But never before final grades have been posted. If you suspect a student may file a grade complaint, give him/her a Xerox copy of his/her final and retain the original.

(f) Cheating

By careful handling of the copies of exams, by seating arrangements, and by walking around the class at times during an exam, you can make it difficult for students to cheat. On take-home work make an explicit statement as to your policy on collaborations. In case of definite evidence of cheating, report the case with all the evidence immediately to the assistant head so that appropriate action may be taken. Regulations concerning the handling of such cases are given in the Student Conduct Code.

Other Regulations

Graduate Teaching Fellows, along with all other faculty members, are subject to other university regulations, including those contained in the Administrative Code of the State System of Higher Education.

For information on the University of Oregon policy regarding romantic relationships between instructors and students, see https://gradschool.uoregon.edu/gtf/gtf-orientation#conflict.

PART III. THE ART OF TEACHING

In a state university, where students from the state are more or less freely admitted, our teaching should be directed not only to the gifted student. We have a responsibility to provide a good education for the average college student, and at the same time to provide the stimulation and assistance needed by the exceptionally strong and weak students, respectively.

The First Few Weeks

Get to know the students by name if you possibly can and ask students questions by name. This establishes a relationship between the instructor and individual students.

You should announce grading and exam policies, but only after you are sure that you can maintain them, given the framework of procedures that have to be followed because of university
or department policy. Your course coordinator should be able to give you guidance here. It is a
good idea to remind the class of the time of the final exam and to point out that no final can be
given in advance of the scheduled time. Information on the scheduling of the final examinations
is in the Time Schedule.

Give a quiz or exam early; it helps to make the students feel involved in the course, and gives
you and the students a quick check on how well you are getting the material across.

Preparation

Look carefully at the homework problems as well as the theoretical material to be discussed. It is
embarrassing not to be able to do problems you have assigned. You can avoid this by completing
the homework assignment ahead of time, even for exercises you initially believe to be trivial.

Classroom Procedures, Working at the Blackboard, etc.

Most students seem to do best in elementary mathematics courses if they are involved in their
classes—working problems on the board or on quizzes, answering and asking questions,
participating in discussions, etc. Participation by your students is impossible if you lecture all the
time. One way to combat the inviting prospect of doing all the talking yourself is to make
advance assignments every day, forcing students to read the book and try to do problems before
the material is explained. Then they are prepared to ask questions about things that they don't
understand, and time isn't wasted by going over things that are already clear to the students from
the textbook.

Homework

There will not be enough markers available to mark all the homework you would like to assign,
and it is a big chore to grade a lot yourself. One way to avoid reliance on grading all homework
is to discuss in class, either through questions by students, questions by instructors, quizzes, etc.,
problems of the types that have been assigned. If this is organized carefully, it does not slow
down the class as much as it would appear, and can really give students a chance to develop their
ideas. Experience has shown that in pre-calculus courses, students tend not to work hard enough,
and are unsuccessful unless homework is assigned and some of it graded.

To get the most out of your marker’s limited hours, have the marker mark four or five (or, if your
grader is only half-time, two or three) of the problems assigned. You should decide which
exercises should be marked; select a variety of problems; problems which are particularly
important or for which no answer is given. Whatever you do, *insist that your marker return the
papers promptly*. A typical timeframe is to have graded work returned within one week of the
due date. If on occasion, your marker can't find the time for your papers, have him or her return
them unmarked. The papers won't do your students any good if they are in the marker’s
backpack.

Applications and Problem Solving

Most of elementary calculus has its origin in physical problems. Even for students who are not
taking physics or other sciences, do not ignore the powerful connections between the
mathematics you teach and its applications. Learning how to set up and solve applied problems should be the organizing principle for most courses at the 100 and 200 level including calculus and pre-calculus.

Relationships with Students

Even though you are concerned with more sophisticated mathematics in your own work, remember that even the material in Math 095 was at the frontier in its day. There is something interesting and exciting about even the most humble parts of elementary mathematics, and your students will respond to the interest and enthusiasm you can bring to your teaching of these subjects. Don't be disappointed if your students fail to show interest at the beginning; to get them interested is what teaching is all about.

Suggestions for Beginning Teachers of Mathematics

1) Don't be too ambitious. Don't expect too much. Especially don't expect students to learn proofs of any theorems unless you are teaching Math 253 or above. Courses below 253 are more applied and computational in nature, and your teaching should reflect this. Remember that very few of your students are prospective math majors.

2) Remember that you are presenting new material, not reviewing. Hence, a lot of repetition is in order.

3) Review often (maybe at the beginning of each period) what has been done and where you are going.

4) Don't go to class unprepared. Graduate students have a tendency to be so confident of the material that they under-prepare. This results in confusion to students. Each lesson should be well prepared, keeping in mind the type of students in the class. Remember there is a big difference between understanding and presenting material.

5) Do connect the lectures and class discussions with the textbook. Students can become quite confused if you use notation or a development of concepts that is different from one used by the textbook. If you must deviate from the book, inform them that your presentation is different and indicate whether they will be responsible for the book's viewpoint.

6) Over-view the entire course at the beginning of the term to get an idea of what is coming up. That way you can place the proper emphasis on the ideas that are most important in terms of future use.

7) Look over the homework problems before they are assigned. Some problems involve very messy computations and perhaps shouldn't be assigned. Be sure, in advance, that you can work any problem that you assign!

8) Don't assume that the students are able to understand all that they read in the textbook. Assume the contrary. Few students, even in 200-level courses, can read and comprehend mathematics.
9) Assign some problems whose answers are not given in the back of the book. Warn students that not all the answers in the book are correct, and that sometimes the answers in the book are simplified so that students might have a correct answer but in a different form from the one used in the book.

10) At the beginning of the course prepare a syllabus as in the Instructor Policy Manual, and be prepared to answer questions such as:

(a) Do you grade on the curve?

(b) How are grades determined? How much do quizzes count? How much does the final count? How much does homework count?

(c) Why are there any grades?

(d) Why are there so many tests?

(e) Do you give extra credit?

11) Emphasize to students that success in mathematics is dependent upon practice, and that falling behind as much as three or four days is almost certainly ruinous considering the rapid rate of these courses.

12) Be careful with your responses if students pressure you to make commitments. For example, a student might ask you "If I get a B on the final, will I get a B in the course?" An unqualified affirmative response could later cause you difficulty. As another example, your class might urge you to throw out one midterm when making out the final grade. Or they might ask you to "honor dead week" by not assigning homework.

13) Be an actor! You may find yourself teaching lower level courses in which, on some days, the material is not very exciting to you. But if your students are to become interested, you must convince them that you are interested.

14) If you have any new revolutionary ideas about how mathematics should be taught, don't try them out the first year you teach!

PART IV. GENERAL INFORMATION

Teaching assignments for fall term cannot be made until shortly before the term begins. For winter and spring terms, teaching assignments will be made a few weeks before the term begins. You will be given an opportunity to indicate your preference as to hours and courses. We cannot always fulfill requests, but an attempt will be made. If you have a special scheduling problem, let us know.

Each winter teaching fellows will be asked whether they wish to be reappointed for the following academic year. Requests for reappointment are considered by the Graduate Affairs Committee.
and decisions are normally made during spring term. Occasionally conditional reappointments are made subject to the fulfillment of certain requirements. First year fellows making satisfactory progress toward their degree objectives are usually reappointed for a second year if it is needed to complete this objective. After the second year, reappointments are based on the students' making satisfactory progress in the doctoral program. In spring term, students who have had five years or more years of support from the department must petition the Graduate Affairs Committee for continued support the following year.

Summer teaching funds are greatly limited, but an attempt is made to give at least some support to persons who have been reappointed for the year. Seniority in the graduate program is a major criterion, however, in recent years nearly all who requested summer support have received it.

The department attempts to provide the same services to teaching fellows that it provides to any faculty member in connection with undergraduate teaching. In particular, this means that the department stands behind decisions and actions taken by instructors as part of their teaching duties if they are consistent with departmental and university policy. When in doubt about university and departmental policy, don't make firm commitments until you understand regulations that might apply.

Here are some things that your students may ask you about, but for which you are not responsible and you may send them to the head undergraduate advisor (Hayden Harker, harker@uoregon.edu):

(a) credit-by-exam
(b) course challenges
(c) degree requirements in mathematics.
(d) courses that students should or could take next.

Again it is not your duty to answer this sort of question (and you may send them to the head undergraduate advisor), but you will probably want to be able to answer the more straightforward questions.

Initial placement of students in lower division courses is determined by placement examinations. Math 070 is intended for students with insufficient preparation to take Math 095. Math 095 covers topics that are often presented in first year high school algebra courses. Math 111 is a quick course, covering topics from second year high school algebra with emphasis on mathematical modeling and functions. After Math 111 there are several options. Accordingly, the most common questions from students boil down to this: "I've had Math 111, now what?"

General Advice:

For students who have taken Math 111 or have a placement test score above Math 111:

(a) If you eventually intend to take a year's sequence in Calculus (Math 251-253), you should begin with:
Math 112 Elementary Functions: A study of the trigonometric, logarithmic and exponential functions; for students who have not studied these subjects in high school.

(b) If you plan to take a calculus course designed for students of the social sciences and managerial sciences you are now qualified to take:

Math 241, 242, 243 Calculus for the Non-Physical Sciences: Not to be taken by students with credit for Math 251, 252, 253. Trigonometry is not a prerequisite.

(c) If you are a Computer Science major, you should take:

Math 112 then

(d) Finally, you are adequately prepared for Math 105, 106, 107. Any two of these courses may be combined with Math 111 to satisfy the math requirement for the Bachelor of Science.