Part I. Definitions and Theorems.

1 (6 points). Give two equivalent definitions of projective module.
2 (6 points). State the Primitive Element Theorem from the theory of field extensions.

Part II. True or false. Give brief justification.

1 (8 points). The center of a nontrivial solvable group is nontrivial.
2 (8 points). Let $f(x)$ be an irreducible separable polynomial of degree n. Then $|Gal(f(x))|$ is divisible by n.
3 (8 points). Let G be a finite group such that the group $Aut(G)$ is cyclic. Then G is abelian.
4 (8 points). The ring $C[x, y]$ is Jacobson semisimple.
5 (8 points). Let $R = F_{25}[x]$. Then $K_0(R) = Z$.

Part III. Longer problems.

You have to solve any 4 of the problems below.

1 (12 points). Let I and J be two ideals of $C[x_1, \ldots, x_n]$. Assume that IJ is radical. Prove that $IJ = I \cap J$.
2 (12 points). Let A be a noncommutative finite dimensional algebra over C such that the length of A–module A is 2. What is $dim(A)$?
3 (12 points). Find the Galois group of the polynomial $x^4 + x^2 + 1$ over Q.
4 (12 points). Let V be a linear space of dimension n and $F : V \rightarrow V$ be a linear operator with determinant D. What is determinant of $\bigwedge^2 F : \bigwedge^2 V \rightarrow \bigwedge^2 V$?
5 (12 points). Let G be a finite group with precisely 5 inequivalent irreducible representations of dimension 1,1,2,3 and d. Find d.
Part I. Definitions and Theorems.

1 (6 points). Give two equivalent definitions of projective module.

Answer: P is projective if

1) for any exact sequence $A \rightarrow^{f} B \rightarrow 0$ and a homomorphism $f : P \rightarrow B$ there exists a homomorphism $g : P \rightarrow A$ such that $f = \phi \circ g$.
2) The functor $\text{Hom}(P, ?)$ is exact.
3) P is a direct summand of a free module.

2 (6 points). State the Primitive Element Theorem from the theory of field extensions.

Answer: A finite separable extension E/K can be generated by one element: $E = K(\alpha)$.

Part II. True or false. Give brief justification.

1 (8 points). The center of a nontrivial solvable group is nontrivial.

Solution. False. Group S_3 is solvable with trivial center.

2 (8 points). Let $f(x)$ be an irreducible separable polynomial of degree n. Then $|\text{Gal}(f(x))|$ is divisible by n.

Solution. True. The action of $\text{Gal}(f(x))$ on the roots of $f(x)$ is transitive, hence $|\text{Gal}(f(x))| = n \cdot |St|$ where $St \subset \text{Gal}(f(x))$ is a stabilizer of a root.

3 (8 points). Let G be a finite group such that the group $\text{Aut}(G)$ is cyclic. Then G is abelian.

Solution. True. Group $G/Z(G)$ is a subgroup of $\text{Aut}(G)$ (inner automorphisms). A subgroup of a cyclic group is cyclic and thus $G/Z(G)$ should be cyclic. Thus $G/Z(G)$ is trivial.

4 (8 points). The ring $\mathbb{C}[x, y]$ is Jacobson semisimple.

Solution. True. The Jacobson radical is an intersection of all maximal ideals. By Nullstellensatz the maximal ideals are of the form $\{f \in \mathbb{C}[x, y] \mid f(a, b) = 0\}$ for various $(a, b) \in \mathbb{C}^2$. Clearly, the intersection is zero.

5 (8 points). Let $R = F_{25}[x]$. Then $K_0(R) = \mathbb{Z}$.

Solution. True. The ring R is PID, hence any finitely generated projective module is free; free modules over domain are (stably) isomorphic only if ranks coincide.

Part III. Longer problems.
You have to solve any 4 of the problems below.

1 (12 points). Let \(I \) and \(J \) be two ideals of \(\mathbb{C}[x_1, \ldots, x_n] \). Assume that \(IJ \) is radical. Prove that \(IJ = I \cap J \).

Solution. We have \(IJ \subset I \cap J \subset \sqrt{I \cap J} = \sqrt{IJ} = IJ \). The result follows.

2 (12 points). Let \(A \) be a noncommutative finite dimensional algebra over \(\mathbb{C} \) such that the length of \(A \)-module \(A \) is 2. What is \(\text{dim}(A) \)?

Solution. First assume that \(J(A) \neq 0 \). Then \(J(A) \) and \(A/J(A) \) should be simple \(A \)-modules. Thus \(A/J(A) \) is simple \(A/J(A) \)-module and hence \(A/J(A) = \mathbb{C} \). Since \(J(A) \) is simple over \(A/J(A) \) it is one dimensional over \(\mathbb{C} \). Thus \(A \) is two dimensional and hence commutative. Thus \(J(A) = 0 \) and \(A \) is semisimple. We have two possibilities: \(A = \mathbb{C} \oplus \mathbb{C} \) and \(A = \text{Mat}_2(\mathbb{C}) \). First is again commutative. Thus \(A = \text{Mat}_2(\mathbb{C}) \).

Answer: \(\text{dim}(A) = 4 \).

3 (12 points). Find the Galois group of the polynomial \(x^4 + x^2 + 1 \) over \(\mathbb{Q} \).

Solution. We have \(x^4 + x^2 + 1 = (x^2 + 1)^2 - x^2 = (x^2 - x + 1)(x^2 + 1) \). The roots of \(x^2 - x + 1 \) and \(x^2 + 1 \) differ only by sign, hence generate the same quadratic field. Hence \(\text{Gal}(x^4 + x^2 + 1) = \text{Gal}(x^2 - x + 1) = \mathbb{Z}/2\mathbb{Z} \).

Answer: \(\text{Gal}(x^4 + x^2 + 1) = \mathbb{Z}/2\mathbb{Z} \).

4 (12 points). Let \(V \) be a linear space of dimension \(n \) and \(F : V \to V \) be a linear operator with determinant \(D \). What is determinant of \(\Lambda^2 F : \Lambda^2 V \to \Lambda^2 V \)?

Solution. We can assume that the base field is algebraically closed. Using Jordan normal form we can choose a basis \(\{e_1, \ldots, e_n\} \) such that \(F \) is upper triangular with eigenvalues \(\lambda_1, \ldots, \lambda_n \). Now in basis \(e_1 \wedge e_2, \ldots, e_1 \wedge e_n, e_2 \wedge e_3, \ldots, e_{n-1} \wedge e_n \) the operator \(\Lambda^2 F \) is upper triangular with eigenvalues \(\lambda_1 \lambda_2, \ldots, \lambda_{n-1} \lambda_n \). Hence determinant of \(\Lambda^2 F \) is \(\prod_{i<j} \lambda_i \lambda_j = (\prod_i \lambda_i)^{n-1} = D^{n-1} \).

Answer: \(D^{n-1} \).

5 (12 points). Let \(G \) be a finite group with precisely 5 inequivalent irreducible representations of dimension 1, 1, 2, 3 and \(d \). Find \(d \).

Solution. We have \(|G| = 1^2 + 1^2 + 2^2 + 3^2 + d^2 = 15 + d^2 \). Since \(|G| \) should be divisible by 2, 3 and \(d \) we find that \(d = 3 \) or \(d = 15 \). Assume that \(d = 15 \) and \(|G| = 240 \). Then \(|G| : G'| = 2 \) (since \(G \) has precisely 2 linear characters) and \(G' \) contains at least 4 conjugacy classes of \(G \): elements of order 1, 2, 3, 5. Thus \(G - G' \) should be a single conjugacy class of size 120. Thus for \(x \in G - G' \) we have \(|C_G(x)| = 2 \). This implies \(x^2 = 1 \) (since \(1, x, x^2 \in C_G(x) \)) and hence \(x \) lies in a Sylow 2-subgroup \(P \). But then \(|C_G(x)| > 2 \): either \(x \) is not central in \(P \) and then \(C_G(x) \) contains \(x \) and \(Z(P) \), or \(x \) is central and \(C_G(x) \) contains \(P \). This is a contradiction. Hence \(d = 3 \) (this is really possible; \(G = S_4 \) is an example).

Answer: \(d = 3 \).
You have to solve any 4 of the problems below.

1 (12 points). Let \(I \) and \(J \) be two ideals of \(\mathbb{C}[x_1, \ldots, x_n] \). Assume that \(IJ \) is radical. Prove that \(IJ \subseteq I \cap J \).

Solution. We have \(IJ \subseteq I \cap J \subseteq \sqrt{IJ} = IJ \). The result follows.

2 (12 points). Let \(A \) be a noncommutative finite dimensional algebra over \(\mathbb{C} \) such that the length of \(A \)–module \(A \) is 2. What is \(\dim(A) \)?

Solution. First assume that \(J(A) \neq 0 \). Then \(J(A) \) and \(A/J(A) \) should be simple \(A \)–modules. Thus \(A/J(A) \) is simple \(A/J(A) \)–module and hence \(A/J(A) = \mathbb{C} \). Since \(J(A) \) is simple over \(A/J(A) \) it is one dimensional over \(\mathbb{C} \). Thus \(A \) is two dimensional and hence commutative. Thus \(J(A) = 0 \) and \(A \) is semisimple. We have two possibilities: \(A = \mathbb{C} \oplus \mathbb{C} \) and \(A = \text{Mat}_2(\mathbb{C}) \). First is again commutative. Thus \(A = \text{Mat}_2(\mathbb{C}) \).

Answer: \(\dim(A) = 4 \).

3 (12 points). Find the Galois group of the polynomial \(x^4 + x^2 + 1 \) over \(\mathbb{Q} \).

Solution. We have \(x^4 + x^2 + 1 = (x^2 + 1)^2 - x^2 = (x^2 - x + 1)(x^2 + x + 1) \). The roots of \(x^2 - x + 1 \) and \(x^2 + x + 1 \) differ only by sign, hence generate the same quadratic field. Hence \(\text{Gal}(x^4 + x^2 + 1) = \text{Gal}(x^2 - x + 1) = \mathbb{Z}/2\mathbb{Z} \).

Answer: \(\text{Gal}(x^4 + x^2 + 1) = \mathbb{Z}/2\mathbb{Z} \).

4 (12 points). Let \(V \) be a linear space of dimension \(n \) and \(F : V \rightarrow V \) be a linear operator with determinant \(D \). What is determinant of \(\wedge^2 F : \wedge^2 V \rightarrow \wedge^2 V \)?

Solution. We can assume that the base field is algebraically closed. Using Jordan normal form from we can choose a basis \(\{e_1, \ldots, e_n\} \) such that \(F \) is upper triangular with eigenvalues \(\lambda_1, \ldots, \lambda_n \). Now in basis \(e_1 \wedge e_2, \ldots, e_1 \wedge e_n, e_2 \wedge e_3, \ldots, e_{n-1} \wedge e_n \) the operator \(\wedge^2 F \) is upper triangular with eigenvalues \(\lambda_1 \lambda_2, \ldots, \lambda_{n-1} \lambda_n \). Hence determinant of \(\wedge^2 F \) is \(\prod_{i<j} \lambda_i \lambda_j = (\prod_i \lambda_i)^{n-1} = D^{n-1} \).

Answer: \(D^{n-1} \).

5 (12 points). Let \(G \) be a finite group with precisely 5 inequivalent irreducible representations of dimension \(1,1,2,3 \) and \(d \). Find \(d \).

Solution. We have \(|G| = 1^2 + 1^2 + 2^2 + 3^2 + d^2 = 15 + d^2 \). Since \(|G| \) should be divisible by \(2,3 \) and \(d \) we find that \(d = 3 \) or \(d = 15 \). Assume that \(d = 15 \) and \(|G| = 240 \). Then \(|G : G'| = 2 \) (since \(G \) has precisely 2 linear characters) and \(G' \) contains at least 4 conjugacy classes of \(G \): elements of order \(1,2,3,5 \). Thus \(G - G' \) should be a single conjugacy class of size 120. Thus for \(x \in G - G' \) we have \(|C_G(x)| = 2 \). This implies \(x^2 = 1 \) (since \(1, x, x^2 \in C_G(x) \)) and hence \(x \) lies in a Sylow 2-subgroup \(P \). But then \(|C_G(x)| > 2 \): either \(x \) is not central in \(P \) and then \(C_G(x) \) contains \(x \) and \(Z(P) \), or \(x \) is central and \(C_G(x) \) contains \(P \). This is a contradiction. Hence \(d = 3 \) (this is really possible; \(G = S_4 \) is an example).

Answer: \(d = 3 \).