Skip to Content

Faculty Research Interests

Nicolas Addington: algebraic geometry

I work in algebraic geometry, mainly using derived categories of coherent sheaves.  My interests include compact hyperkähler manifolds, rationality questions, and classical algebraic geometry.

Yashar Ahmadian: theoretical neuroscience, statistical physics, random matrix theory

My research is in the field of theoretical neuroscience.  I am broadly interested in understanding how large networks of neurons process sensory inputs and give rise to higher level cognitive functions through their collective dynamics on multiple time scales.  I also work on developing new statistical and computational methods for analyzing large, high-dimensional neurobiological datasets.  In pursuing these interests, I use techniques from statistical physics, random matrix theory, stochastic processes, machine learning, and information theory.

Shabnam Akhtari: number theory, Diophantine equations

My main research interests are in Number Theory, in particular in Diophantine approximation, Geometry of Numbers and the Theory of Height Functions.

Arkady Berenstein: quantum groups, representation theory, algebraic combinatorics

My research interests include Representation Theory of Lie algebras, Quantum Groups, and Coxeter Groups, Hopf Algebras, Algebraic Combinatorics Cluster algebras, Noncommutative Algebra and related aspects. I attach a few links to MathWorld and Wikipedia containing accessible descriptions of these fields of Mathematics.

Boris Botvinnik: differential topology, positive scalar curvature, Morse theory

I study algebraic topology and differential geometry, with a focus on conformal geometry and the space of metrics of positive scalar curvature.

Marcin Bownik: harmonic analysis, wavelets, approximation theory

I work in the area of harmonic analysis and wavelets. More specifically my research areas are:

  • construction of wavelet bases with good time-frequency localization for large classes of dilations;
  • limitations on the existence of such wavelet bases;
  • anisotropic function spaces and their study through wavelet bases, general L^2 theory of wavelets, frame wavelets, and generalized multiresolution analysis.

Jon Brundan: algebraic groups, combinatorial representation theory, Lie superalgebras

I study representation theory and combinatorics arising from semisimple Lie algebras and algebraic groups, like the Lie algebra gl_n(C) of all n by n matrices over C and the group GL_n(C) of invertible such matrices.

Dan Dugger: motivic homotopy theory, K-theory, homological algebra

I work in algebraic topology and homological algebra. I study algebraic K-theory and other “motivic” cohomology theories for algebraic varieties, as well as the homotopy theory of differential graded algebras. I’m interested in applications of homotopy-theoretic methods to geometry and commutative algebra.

Ellen Eischen: number theory

I work primarily in number theory, especially algebraic number theory.  My research is largely driven by questions concerning automorphic forms (a class of functions that includes modular forms) and L-functions (a class of functions that includes the Riemann zeta function).   Because they encode significant algebraic and arithmetic information (for example about ideal class groups, elliptic curves, and Galois representations), L-functions play a key role in several major conjectures (including the Birch and Swinnerton-Dyer Conjecture and the Main Conjectures of Iwasawa Theory, which have in turn led to many of the questions I seek to answer in my research).  In my work, I use a variety of techniques, including algebraic, p-adic, arithmetic geometric, and analytic.

Ben Elias: representation theory, categorification

I study categorical representation theory, a relatively new field that takes representation theory to the next level. The categorification of a ring is a monoidal category whose Grothendieck group is that ring. A categorified module is an action of the monoidal category on another category, whose Grothendieck group is that module. Categorical representation theory has an astounding amount of structure, making it an interesting topic of study in its own right, but it also can be used to study ordinary representation theory, especially in finite characteristic.

Peter Gilkey: higher-signature differential geometry, heat trace analysis

I work in pseudo-Riemannian geometry. I also work studying the asymptotics of the heat equation and their applications to questions in geometry.

Weiyong He: differential geometry and partial differential equations

  • Complex geometry and Kahler geometry, extremal metrics and Calabi flow.
  • Geometric evolution equations, mean curvature flow.
  • Nonlinear partial differential equations.

Jim Isenberg: mathematical general relativity, Ricci flow, nonlinear PDEs

I study the behavior of solutions of nonlinear partial differential equations of the sort that arise in Einstein’s theory of general relativity, in Ricci flow, and in related problems from physics and geometry.

Alexander Kleshchev: representation theory, Lie theory, group theory

I study representation theory of Lie algebras, algebraic groups and related objects, such as symmetric groups, Hecke algebras, etc.

David Levin: Markov chains and random walks, multiparameter processes, potential theory

My research is in probability theory, including: random walks, Markov chains, multiparameter processes, jump processes, and related potential theory. Recently, I am interested in quantatitive estimates on the time for ergodic Markov chains to equilibriate.

Huaxin Lin: Functional analysis, C*-algebras, dynamical systems

I am currently interested in the structure of C*-algebras and applications of C*-algebra theory in classical topological dynamical systems and non-commutative dynamical systems.

Robert Lipshitz: low-dimensional and symplectic topology

I use techniques from symplectic geometry and, to a lesser extent, algebraic topology and abstract algebra, to study questions about knots and 3- and 4-dimensional manifolds.  Most of this falls under the category of Floer homology and pseudo-holomorphic curves.

Peng Lu: geometric analysis, Ricci flow, complex geoemtry

My research is in geometric analysis. Currently I am working on Ricci flow, a heat type equation which evolves Riemannian metrics by its Ricci curvature. More precisely I am interested in the ancient solutions and the singularity analysis of Ricci flow.

Victor Ostrik: geometric Lie theory, tensor categories, Hopf algebras

I am currently interested in the categorification of ring theory, that is study of tensor categories and module categories over them, and in geometric representation theory, which means study of representation theoretic questions using tools from algebraic geometry (perverse sheaves and D-modules).

N. Christopher Phillips: C*-algebras, functional analysis, noncommutative geometry

I study C*-algebras, which are special algebraic structures which arise in analysis. The easiest examples of C*-algebras are C(X), the algebra of all continuous functions on a compact Hausdorff space X, and L(H), the algebra of all continuous linear operators on a Hilbert space H. The combination of strong extra structure and usefulness in applications has made C*-algebras a broad and very active branch of mathematics. For example, the C*-algebra associated to a locally compact group G is connected to the representation theory of the group. More generally, the crossed product C*(G, A) is made from an action of G on a C*-algebra A. When A = C(X), the study of the crossed product connects with dynamical systems. Most of my current research concerns group actions on C*-algebras (often ones of the form C(X)), with emphasis on but not limited to the structure and classification of crossed products. Even when the group is the integers and the C*-algebra is C(X), or when the group is Z/2Z and the C*-algebra is simple, many questions remain open.

I also work on operator algebras on L^p spaces for p different from 2. This is a very new area, with less structure but still quite promising, and there are many problems which nobody has looked at yet. (I have a collection of over 70 problems, varying greatly in difficulty.) Since the area is so new, there is much less prior work to learn about. The methods are less algebraic than for C*-algebras.

Alexander Polishchuk: algebraic geometry, noncommutative geometry

My general area of research is algebraic geometry. More specifically, recently I work with problems involving derived categories of coherent sheaves on algebraic varieties, noncommutative geometry and higher homotopy structures (such as A-infinity algebras) appearing in algebraic geometry.

Nicholas Proudfoot: hyperplane arrangements, symplectic algebraic geometry

I am interested in symplectic algebraic varieties, which come up a lot in representation theory (e.g. quiver varieties, Hilbert schemes on ALE spaces, the Springer resolution, slices in the affine Grassmannian). The spaces with which I work the most are hypertoric varieties, which interact with combinatorial objects such as matroids, zonotopes, and hyperplane arrangements.

Peter Ralph: mathematical biology, evolution, statistics

I work on probability and statistics as applied to understanding ecology and evolution, in particular developing new stochastic models of biological evolution and using statistical inference and visualization methods to find out what genomes can tell us about biology.

Hal Sadofsky: stable homotopy theory, homological algebra, complex cobordism

I work primarily in stable homotopy theory which is the part of algebraic topology concerned with properties of maps which are preserved after “suspending” (cross X with the unit interval, and identify X x 0 to a point and X x 1 to a point). At the moment the questions I’m working on concern understanding how to compute generalized homology theories (functors from spaces to graded groups which obey most of the axioms of homology theory) on certain types of spaces arising from limit constructions, and their applications.

Brad Shelton: non-commutative algebraic geometry, ring theory, homological algebra

I study noncommutative ring theory and homological algebra, including noncommutative algebraic geometry, Koszul algebras and generalized Koszul algebras.

Chris Sinclair: random matrix theory, heights of polynomials

I am interested in the statistics of eigenvalues of random matrices and the roots of random polynomials. I am also interested in measures of complexity of polynomials (heights) and the distribution of roots of polynomials with low height.

Dev Sinha: rational homotopy theory, knot theory, operads

I have worked on a fairly wide range of topics in topology, mostly in algebraic topology but some in geometric topology and in algebra.  I like to see the geometry which underlies algebraic and homotopical structures.   My most recent projects are in knot theory, in the cohomology of alternating and symmetric groups, and in rational homotopy theory (the last two being an interesting juxtaposition since the cohomology of symmetric groups is all torsion while rational homotopy theory systematically ignores torsion). I have also worked on compatifications, operads, and group actions on manifolds. What underlies many of these topics is a relationship with configuration spaces, one of my strongest interests.

Arkady Vaintrob: algebraic geometry, knot theory, mathematical physics, Lie theory

I study algebra and geometry motivated by physics. My current interests involve algebraic geometry, in particular orbifolds. My past interests have included knot theory and representation theory.

Vadim Vologodsky: algebraic geometry, homological algebra

I work in Algebraic geometry, Number theory, and Homological Algebra. I study the p-adic Hodge theory, motives and algebraic K-theory. I’m interested in applications of homotopy-theoretic methods to Algebra.

Hao Wang: superprocesses, mathematical finance, stochastic PDEs

My current research interest is in the area of measure-valued processes or superprocesses that come out as limits in distribution of a sequence of branching particle systems.

Micah Warren: geometric analysis, partial differential equations

I study Geometric Analysis and Geometric PDE.  My most recent work has involved fourth order elliptic minimal surface equations, and other recent work has been on constructions of Ricci curvature with applications to machine learning. In general I study fully nonlinear elliptic PDE such as the Monge-Ampère (sometimes involving optimal transportation) and special Lagrangian equations.

Yuan Xu: numerical analysis, orthogonal polynomials, approximation theory, harmonic analysis

I work in several directions in analysis, applied math, and numerical analysis: orthogonal polynomials, approximation theory, Fourier analysis, numerical integration, as well as computed tomography (CT) and Radon transforms.

Benjamin Young: algebraic and enumerative combinatorics, perfect matchings

I work in enumerative, bijective and algebraic combinatorics.  Most of what I am working on at the moment is related to the dimer model, or to Schubert calculus and the combinatorics of reduced words.  Lately I’ve also been spending a lot of time thinking about Kazhdan-Lusztig polynomials for matroids.  I use computers heavily in my work.